IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020i10p1913-1927.html
   My bibliography  Save this article

Probabilistic Analysis of Domino Effects by Using a Matrix‐Based Simulation Approach

Author

Listed:
  • Jianfeng Zhou
  • Genserik Reniers

Abstract

Major industrial accidents occurring at so‐called major hazard installations may cause domino accidents which are among the most destructive industrial accidents existing at present. As there may be many hazard installations in an area, a primary accident scenario may potentially propagate from one installation to another, and correlations exist in probability calculations of domino effects. In addition, during the propagation of a domino effect, accidents of diverse types may occur, some of them having a synergistic effect, while others do not. These characteristics make the analytical formulation of domino accidents very complex. In this work, a simple matrix‐based modeling approach for domino effect analysis is proposed. Matrices can be used to represent the mutual influences of different escalation vectors between installations. On this basis, an analysis approach for accident propagation as well as a simulation‐based algorithm for probability calculation of accidents and accident levels is provided. The applicability and flexibility of this approach is discussed while applying it to estimate domino probabilities in a case study.

Suggested Citation

  • Jianfeng Zhou & Genserik Reniers, 2020. "Probabilistic Analysis of Domino Effects by Using a Matrix‐Based Simulation Approach," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1913-1927, October.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:10:p:1913-1927
    DOI: 10.1111/risa.13544
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13544
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nima Khakzad & Faisal Khan & Paul Amyotte & Valerio Cozzani, 2013. "Domino Effect Analysis Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 292-306, February.
    2. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    3. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.
    4. Alileche, Nassim & Cozzani, Valerio & Reniers, Genserik & Estel, Lionel, 2015. "Thresholds for domino effects and safety distances in the process industry: A review of approaches and regulations," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 74-84.
    5. Salzano, Ernesto & Cozzani, Valerio, 2005. "The analysis of domino accidents triggered by vapor cloud explosions," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 271-284.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ovidi, Federica & Zhang, Laobing & Landucci, Gabriele & Reniers, Genserik, 2021. "Agent-based model and simulation of mitigated domino scenarios in chemical tank farms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Ricci, Federica & Yang, Ming & Reniers, Genserik & Cozzani, Valerio, 2024. "Emergency response in cascading scenarios triggered by natural events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Necci, Amos & Cozzani, Valerio & Spadoni, Gigliola & Khan, Faisal, 2015. "Assessment of domino effect: State of the art and research Needs," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 3-18.
    6. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    8. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    10. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.
    11. Zhou, Jianfeng & Reniers, Genserik, 2020. "Probabilistic Petri-net addition enabling decision making depending on situational change: The case of emergency response to fuel tank farm fire," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Nima Khakzad, 2018. "A Graph Theoretic Approach to Optimal Firefighting in Oil Terminals," Energies, MDPI, vol. 11(11), pages 1-14, November.
    14. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    16. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Amin, Md. Tanjin & Scarponi, Giordano Emrys & Cozzani, Valerio & Khan, Faisal, 2024. "Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Khakzad, Nima & Reniers, Genserik, 2019. "Low-capacity utilization of process plants: A cost-robust approach to tackle man-made domino effects," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Nima Khakzad, 2018. "Which Fire to Extinguish First? A Risk‐Informed Approach to Emergency Response in Oil Terminals," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1444-1454, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:10:p:1913-1927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.