IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i4p940-956.html
   My bibliography  Save this article

Statistical Approach to Identify Threshold and Point of Departure in Dose–Response Data

Author

Listed:
  • Maria A. Spassova

Abstract

The study presents an integrated, rigorous statistical approach to define the likelihood of a threshold and point of departure (POD) based on dose–response data using nested family of bent‐hyperbola models. The family includes four models: the full bent‐hyperbola model, which allows for transition between two linear regiments with various levels of smoothness; a bent‐hyperbola model reduced to a spline model, where the transition is fixed to a knot; a bent‐hyperbola model with a restricted negative asymptote slope of zero, named hockey‐stick with arc (HS‐Arc); and spline model reduced further to a hockey‐stick type model (HS), where the first linear segment has a slope of zero. A likelihood‐ratio test is used to discriminate between the models and determine if the more flexible versions of the model provide better or significantly better fit than a hockey‐stick type model. The full bent‐hyperbola model can accommodate both threshold and nonthreshold behavior, can take on concave up and concave down shapes with various levels of curvature, can approximate the biochemically relevant Michaelis–Menten model, and even be reduced to a straight line. Therefore, with the use of this model, the presence or absence of a threshold may even become irrelevant and the best fit of the full bent‐hyperbola model be used to characterize the dose–response behavior and risk levels, with no need for mode of action (MOA) information. Point of departure (POD), characterized by exposure level at which some predetermined response is reached, can be defined using the full model or one of the better fitting reduced models.

Suggested Citation

  • Maria A. Spassova, 2019. "Statistical Approach to Identify Threshold and Point of Departure in Dose–Response Data," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 940-956, April.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:4:p:940-956
    DOI: 10.1111/risa.13191
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13191
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patricia M. E. Altham, 1978. "Two Generalizations of the Binomial Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(2), pages 162-167, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
    2. Yu, Chang & Zelterman, Daniel, 2008. "Sums of exchangeable Bernoulli random variables for family and litter frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1636-1649, January.
    3. Pires, Rubiane M. & Diniz, Carlos A.R., 2012. "Correlated binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2513-2525.
    4. Molenberghs, Geert & Declerck, Lieven & Aerts, Marc, 1998. "Misspecifying the likelihood for clustered binary data," Computational Statistics & Data Analysis, Elsevier, vol. 26(3), pages 327-349, January.
    5. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    6. Iain L. MacDonald, 2021. "Is EM really necessary here? Examples where it seems simpler not to use EM," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 629-647, December.
    7. Sueli Mingoti, 2003. "A note on the sample size required in sequential tests for the generalized binomial distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(8), pages 873-879.
    8. Ardo Hout & Graciela Muniz-Terrera, 2019. "Hidden three-state survival model for bivariate longitudinal count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 529-545, July.
    9. Dittrich, R. & Hatzinger, R. & Katzenbeisser, W., 2002. "Modelling dependencies in paired comparison data: A log-linear approach," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 39-57, July.
    10. Dankmar Böhning, 2015. "Power series mixtures and the ratio plot with applications to zero-truncated count distribution modelling," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 201-216, August.
    11. Catalina Stefanescu & Bruce W. Turnbull, 2003. "Likelihood Inference for Exchangeable Binary Data with Varying Cluster Sizes," Biometrics, The International Biometric Society, vol. 59(1), pages 18-24, March.
    12. Lovison, G., 1998. "An alternative representation of Altham's multiplicative-binomial distribution," Statistics & Probability Letters, Elsevier, vol. 36(4), pages 415-420, January.
    13. Gianfranco Lovison, 2015. "A generalization of the Binomial distribution based on the dependence ratio," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(2), pages 126-149, May.
    14. Zhen Pang & Anthony Y. C. Kuk, 2005. "A Shared Response Model for Clustered Binary Data in Developmental Toxicity Studies," Biometrics, The International Biometric Society, vol. 61(4), pages 1076-1084, December.
    15. Zhen Pang & Anthony Y. C. Kuk, 2007. "Test of Marginal Compatibility and Smoothing Methods for Exchangeable Binary Data with Unequal Cluster Sizes," Biometrics, The International Biometric Society, vol. 63(1), pages 218-227, March.
    16. C. D. Lai & K. Govindaraju & M. Xie, 1998. "Effects of correlation on fraction non-conforming statistical process control procedures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(4), pages 535-543.
    17. Timothy I. Cannings & Richard J. Samworth, 2017. "Random-projection ensemble classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 959-1035, September.
    18. Yu, Chang & Zelterman, Daniel, 2002. "Sums of dependent Bernoulli random variables and disease clustering," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 363-373, May.
    19. Chang Yu & Daniel Zelterman, 2002. "Statistical Inference for Familial Disease Clusters," Biometrics, The International Biometric Society, vol. 58(3), pages 481-491, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:4:p:940-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.