IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v37y2017i12p2490-2505.html
   My bibliography  Save this article

Geographic Hotspots of Critical National Infrastructure

Author

Listed:
  • Scott Thacker
  • Stuart Barr
  • Raghav Pant
  • Jim W. Hall
  • David Alderson

Abstract

Failure of critical national infrastructures can result in major disruptions to society and the economy. Understanding the criticality of individual assets and the geographic areas in which they are located is essential for targeting investments to reduce risks and enhance system resilience. Within this study we provide new insights into the criticality of real‐life critical infrastructure networks by integrating high‐resolution data on infrastructure location, connectivity, interdependence, and usage. We propose a metric of infrastructure criticality in terms of the number of users who may be directly or indirectly disrupted by the failure of physically interdependent infrastructures. Kernel density estimation is used to integrate spatially discrete criticality values associated with individual infrastructure assets, producing a continuous surface from which statistically significant infrastructure criticality hotspots are identified. We develop a comprehensive and unique national‐scale demonstration for England and Wales that utilizes previously unavailable data from the energy, transport, water, waste, and digital communications sectors. The testing of 200,000 failure scenarios identifies that hotspots are typically located around the periphery of urban areas where there are large facilities upon which many users depend or where several critical infrastructures are concentrated in one location.

Suggested Citation

  • Scott Thacker & Stuart Barr & Raghav Pant & Jim W. Hall & David Alderson, 2017. "Geographic Hotspots of Critical National Infrastructure," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2490-2505, December.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:12:p:2490-2505
    DOI: 10.1111/risa.12840
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12840
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    2. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    3. Stephanie E. Chang & Timothy L. McDaniels & Joey Mikawoz & Krista Peterson, 2007. "Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 337-358, May.
    4. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    5. Rae Zimmerman & Carlos E. Restrepo, 2006. "The next step: quantifying infrastructure interdependencies to improve security," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 2(2/3), pages 215-230.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    2. Edward J. Oughton & Will Usher & Peter Tyler & Jim W. Hall, 2018. "Infrastructure as a Complex Adaptive System," Complexity, Hindawi, vol. 2018, pages 1-11, November.
    3. Stødle, Kaia & Metcalfe, Caroline A. & Brunner, Logan G. & Saliani, Julian N. & Flage, Roger & Guikema, Seth D., 2021. "Dependent infrastructure system modeling: A case study of the St. Kitts power and water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Eggimann, Sven & Hall, Jim W. & Eyre, Nick, 2019. "A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion," Applied Energy, Elsevier, vol. 236(C), pages 997-1010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    2. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    3. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    4. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    5. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Zhang, Yanlu & Yang, Naiding, 2018. "Vulnerability analysis of interdependent R&D networks under risk cascading propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1056-1068.
    7. Ouyang, Min & Liu, Chuang & Wu, Shengyu, 2020. "Worst-case vulnerability assessment and mitigation model of urban utility tunnels," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Thacker, Scott & Pant, Raghav & Hall, Jim W., 2017. "System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 30-41.
    9. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    10. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    11. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Federico Antonello & Piero Baraldi & Enrico Zio & Luigi Serio, 2022. "A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures," Environment Systems and Decisions, Springer, vol. 42(3), pages 436-449, September.
    14. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    15. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    17. Heracleous, Constantinos & Kolios, Panayiotis & Panayiotou, Christos G. & Ellinas, Georgios & Polycarpou, Marios M., 2017. "Hybrid systems modeling for critical infrastructures interdependency analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 89-101.
    18. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    19. Jingjing Kong & Chao Zhang & Slobodan P. Simonovic, 2019. "A Two-Stage Restoration Resource Allocation Model for Enhancing the Resilience of Interdependent Infrastructure Systems," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    20. Mishra, Vishrut Kumar & Palleti, Venkata Reddy & Mathur, Aditya, 2019. "A modeling framework for critical infrastructure and its application in detecting cyber-attacks on a water distribution system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:12:p:2490-2505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.