IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i1p109-128.html
   My bibliography  Save this article

Quantitative Risk Assessment of Haemolytic and Uremic Syndrome Linked to O157:H7 and Non‐O157:H7 Shiga‐Toxin Producing Escherichia coli Strains in Raw Milk Soft Cheeses

Author

Listed:
  • Frédérique Perrin
  • Fanny Tenenhaus‐Aziza
  • Valérie Michel
  • Stéphane Miszczycha
  • Nadège Bel
  • Moez Sanaa

Abstract

Shiga‐toxin producing Escherichia coli (STEC) strains may cause human infections ranging from simple diarrhea to Haemolytic Uremic Syndrome (HUS). The five main pathogenic serotypes of STEC (MPS‐STEC) identified thus far in Europe are O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Because STEC strains can survive or grow during cheese making, particularly in soft cheeses, a stochastic quantitative microbial risk assessment model was developed to assess the risk of HUS associated with the five MPS‐STEC in raw milk soft cheeses. A baseline scenario represents a theoretical worst‐case scenario where no intervention was considered throughout the farm‐to‐fork continuum. The risk level assessed with this baseline scenario is the risk‐based level. The impact of seven preharvest scenarios (vaccines, probiotic, milk farm sorting) on the risk‐based level was expressed in terms of risk reduction. Impact of the preharvest intervention ranges from 76% to 98% of risk reduction with highest values predicted with scenarios combining a decrease of the number of cow shedding STEC and of the STEC concentration in feces. The impact of postharvest interventions on the risk‐based level was also tested by applying five microbiological criteria (MC) at the end of ripening. The five MCs differ in terms of sample size, the number of samples that may yield a value larger than the microbiological limit, and the analysis methods. The risk reduction predicted varies from 25% to 96% by applying MCs without preharvest interventions and from 1% to 96% with combination of pre‐ and postharvest interventions.

Suggested Citation

  • Frédérique Perrin & Fanny Tenenhaus‐Aziza & Valérie Michel & Stéphane Miszczycha & Nadège Bel & Moez Sanaa, 2015. "Quantitative Risk Assessment of Haemolytic and Uremic Syndrome Linked to O157:H7 and Non‐O157:H7 Shiga‐Toxin Producing Escherichia coli Strains in Raw Milk Soft Cheeses," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 109-128, January.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:1:p:109-128
    DOI: 10.1111/risa.12267
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12267
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fanny Tenenhaus‐Aziza & Jean‐Jacques Daudin & Alexandre Maffre & Moez Sanaa, 2014. "Risk‐Based Approach for Microbiological Food Safety Management in the Dairy Industry: The Case of Listeria monocytogenes in Soft Cheese Made from Pasteurized Milk," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 56-74, January.
    2. Moez Sanaa & Louis Coroller & Olivier Cerf, 2004. "Risk Assessment of Listeriosis Linked to the Consumption of Two Soft Cheeses Made from Raw Milk: Camembert of Normandy and Brie of Meaux," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 389-399, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uma Tiwari & Enda Cummins & Antonio Valero & Des Walsh & Marion Dalmasso & Kieran Jordan & Geraldine Duffy, 2015. "Farm to Fork Quantitative Risk Assessment of Listeria monocytogenes Contamination in Raw and Pasteurized Milk Cheese in Ireland," Risk Analysis, John Wiley & Sons, vol. 35(6), pages 1140-1153, June.
    2. Emilie Rieu & Koenraad Duhem & Elisabeth Vindel & Moez Sanaa, 2007. "Food Safety Objectives Should Integrate the Variability of the Concentration of Pathogen," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 373-386, April.
    3. Fanny Tenenhaus‐Aziza & Jean‐Jacques Daudin & Alexandre Maffre & Moez Sanaa, 2014. "Risk‐Based Approach for Microbiological Food Safety Management in the Dairy Industry: The Case of Listeria monocytogenes in Soft Cheese Made from Pasteurized Milk," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 56-74, January.
    4. Natalie Commeau & Marie Cornu & Isabelle Albert & Jean‐Baptiste Denis & Eric Parent, 2012. "Hierarchical Bayesian Models to Assess Between‐ and Within‐Batch Variability of Pathogen Contamination in Food," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 395-415, March.
    5. Régis Pouillot* & Karin Hoelzer & Yuhuan Chen & Sherri B. Dennis, 2015. "Listeria monocytogenes Dose Response Revisited—Incorporating Adjustments for Variability in Strain Virulence and Host Susceptibility," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 90-108, January.
    6. Pieter Busschaert & Annemie H. Geeraerd & Mieke Uyttendaele & Jan F. Van Impe, 2011. "Sensitivity Analysis of a Two‐Dimensional Quantitative Microbiological Risk Assessment: Keeping Variability and Uncertainty Separated," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1295-1307, August.
    7. Isabelle Albert & Régis Pouillot & Jean‐Baptiste Denis, 2005. "Stochastically Modeling Listeria Monocytogenes Growth in Farm Tank Milk," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1171-1185, October.
    8. Kerr, William A., 2006. "International Harmonization and the Gains from Trade," Estey Centre Journal of International Law and Trade Policy, Estey Centre for Law and Economics in International Trade, vol. 7(2), pages 1-10.
    9. Fanny Aziza & Eric Mettler & Jean‐Jacques Daudin & Moez Sanaa, 2006. "Stochastic, Compartmental, and Dynamic Modeling of Cross‐Contamination During Mechanical Smearing of Cheeses," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 731-745, June.
    10. Régis Pouillot & Véronique Goulet & Marie Laure Delignette‐Muller & Aurélie Mahé & Marie Cornu, 2009. "Quantitative Risk Assessment of Listeria monocytogenes in French Cold‐Smoked Salmon: II. Risk Characterization," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 806-819, June.
    11. Roberto Condoleo & Ziad Mezher & Selene Marozzi & Antonella Guzzon & Roberto Fischetti & Matteo Senese & Stefania Sette & Luca Bucchini, 2017. "Risk Assessment of Human Listeriosis from Semisoft Cheeses Made from Raw Sheep's Milk in Lazio and Tuscany (Italy)," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 661-676, April.
    12. Hajo Rijgersberg & Seth Tromp & Liesbeth Jacxsens & Mieke Uyttendaele, 2010. "Modeling Logistic Performance in Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 30(1), pages 20-31, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:1:p:109-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.