IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v30y2010i1p32-48.html
   My bibliography  Save this article

Intelligent Adversary Risk Analysis: A Bioterrorism Risk Management Model

Author

Listed:
  • Gregory S. Parnell
  • Christopher M. Smith
  • Frederick I. Moxley

Abstract

The tragic events of 9/11 and the concerns about the potential for a terrorist or hostile state attack with weapons of mass destruction have led to an increased emphasis on risk analysis for homeland security. Uncertain hazards (natural and engineering) have been successfully analyzed using probabilistic risk analysis (PRA). Unlike uncertain hazards, terrorists and hostile states are intelligent adversaries who can observe our vulnerabilities and dynamically adapt their plans and actions to achieve their objectives. This article compares uncertain hazard risk analysis with intelligent adversary risk analysis, describes the intelligent adversary risk analysis challenges, and presents a probabilistic defender–attacker–defender model to evaluate the baseline risk and the potential risk reduction provided by defender investments. The model includes defender decisions prior to an attack; attacker decisions during the attack; defender actions after an attack; and the uncertainties of attack implementation, detection, and consequences. The risk management model is demonstrated with an illustrative bioterrorism problem with notional data.

Suggested Citation

  • Gregory S. Parnell & Christopher M. Smith & Frederick I. Moxley, 2010. "Intelligent Adversary Risk Analysis: A Bioterrorism Risk Management Model," Risk Analysis, John Wiley & Sons, vol. 30(1), pages 32-48, January.
  • Handle: RePEc:wly:riskan:v:30:y:2010:i:1:p:32-48
    DOI: 10.1111/j.1539-6924.2009.01319.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2009.01319.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2009.01319.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wm. A. Wulf & Yacov Y. Haimes & Thomas A. Longstaff, 2003. "Strategic Alternative Responses to Risks of Terrorism," Risk Analysis, John Wiley & Sons, vol. 23(3), pages 429-444, June.
    2. Vicki Bier & Santiago Oliveros & Larry Samuelson, 2007. "Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(4), pages 563-587, August.
    3. Henry H. Willis, 2007. "Guiding Resource Allocations Based on Terrorism Risk," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 597-606, June.
    4. H. Rosoff & D. Von Winterfeldt, 2007. "A Risk and Economic Analysis of Dirty Bomb Attacks on the Ports of Los Angeles and Long Beach," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 533-546, June.
    5. Gerald G. Brown & Richard E. Rosenthal, 2008. "Optimization Tradecraft: Hard-Won Insights from Real-World Decision Support," Interfaces, INFORMS, vol. 38(5), pages 356-366, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    2. Henry H. Willis & Tom LaTourrette, 2008. "Using Probabilistic Terrorism Risk Modeling for Regulatory Benefit‐Cost Analysis: Application to the Western Hemisphere Travel Initiative in the Land Environment," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 325-339, April.
    3. Christoph Werner & Tim Bedford & John Quigley, 2018. "Sequential Refined Partitioning for Probabilistic Dependence Assessment," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2683-2702, December.
    4. Michael Greenberg, 2011. "Risk analysis and port security: some contextual observations and considerations," Annals of Operations Research, Springer, vol. 187(1), pages 121-136, July.
    5. Sumitra Sri Bhashyam & Gilberto Montibeller, 2016. "In the Opponent's Shoes: Increasing the Behavioral Validity of Attackers’ Judgments in Counterterrorism Models," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 666-680, April.
    6. Musegaas, Marieke & Schlicher, Loe & Blok, Herman, 2022. "Stackelberg production-protection games: Defending crop production against intentional attacks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 102-119.
    7. Navid Ghaffarzadegan, 2008. "How a System Backfires: Dynamics of Redundancy Problems in Security," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1669-1687, December.
    8. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle, 2015. "Operational Models of Infrastructure Resilience," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 562-586, April.
    9. Zhang, Jing & Zhuang, Jun, 2019. "Modeling a multi-target attacker-defender game with multiple attack types," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 465-475.
    10. Han, Lin & Zhao, Xudong & Chen, Zhilong & Wu, Yipeng & Su, Xiaochao & Zhang, Ning, 2021. "Optimal allocation of defensive resources to defend urban power networks against different types of attackers," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    11. Levitin, Gregory & Hausken, Kjell, 2009. "False targets vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 588-595.
    12. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    13. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    14. Bhan, Aditya & Kabiraj, Tarun, 2018. "Countering Terror Cells: Offence versus Defence," MPRA Paper 88873, University Library of Munich, Germany.
    15. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    16. Bose, Gautam & Konrad, Kai A., 2020. "Devil take the hindmost: Deflecting attacks to other defenders," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Szidarovszky, Ferenc & Luo, Yi, 2014. "Incorporating risk seeking attitude into defense strategy," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 104-109.
    18. Bandyopadhyay, Subhayu & Sandler, Todd, 2021. "Counterterrorism policy: Spillovers, regime solidity, and corner solutions," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 811-827.
    19. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    20. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:30:y:2010:i:1:p:32-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.