IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v30y2010i11p1708-1722.html
   My bibliography  Save this article

An Anticipatory Governance Approach to Carbon Nanotubes

Author

Listed:
  • Mark Philbrick

Abstract

Carbon nanotubes (CNTs) are novel materials with remarkable properties; possible beneficial applications include aircraft frames, hydrogen storage, environmental sensors, electrical transmission, and many more. At the same time, precise characterization of their potential toxicity remains elusive, in part because engineered nanostructures pose challenges to existing assays, predictive models, and dosimetry. While these obstacles are surmountable, their presence suggests that scientific uncertainty regarding the hazards of CNTs is likely to persist. Traditional U.S. policy approaches implicitly pose the question: “What level of evidence is necessary and sufficient to justify regulatory action?” In the case of CNTs, such a strategy of risk analysis is of limited immediate utility to both regulators essaying to carry out their mandates, and users of CNTs seeking to provide an appropriate level of protection to employees, customers, and other stakeholders. In contrast, the concept of anticipatory governance suggests an alternative research focus, that is: “Given the conflicted character of the data, how should relevant actors respond?” Adopting the latter theoretical framework, this article argues that currently available data support treating CNTs “as if” they are hazardous, while simultaneously highlighting some systemic uncertainties in many of the experiments carried out to date. Such a conclusion implies limiting exposure throughout product lifecycles, and also points to the possible applicability of various conceptual tools, such as life‐cycle and multicriteria decision analysis approaches, in choosing appropriate courses of action in the face of prolonged uncertainty.

Suggested Citation

  • Mark Philbrick, 2010. "An Anticipatory Governance Approach to Carbon Nanotubes," Risk Analysis, John Wiley & Sons, vol. 30(11), pages 1708-1722, November.
  • Handle: RePEc:wly:riskan:v:30:y:2010:i:11:p:1708-1722
    DOI: 10.1111/j.1539-6924.2010.01445.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01445.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01445.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Renn, Ortwin, 2003. "Social assessment of waste energy utilization scenarios," Energy, Elsevier, vol. 28(13), pages 1345-1357.
    2. Jennifer Kuzma & Jordan Paradise & Gurumurthy Ramachandran & Jee‐Ae Kim & Adam Kokotovich & Susan M. Wolf, 2008. "An Integrated Approach to Oversight Assessment for Emerging Technologies," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1197-1220, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer Kuzma & Susanna Priest, 2010. "Nanotechnology, Risk, and Oversight: Learning Lessons from Related Emerging Technologies," Risk Analysis, John Wiley & Sons, vol. 30(11), pages 1688-1698, November.
    2. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    3. Wang, Q. & Poh, K.L., 2014. "A survey of integrated decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 77(C), pages 691-702.
    4. Benjamin Trump & Christopher Cummings & Jennifer Kuzma & Igor Linkov, 2018. "A decision analytic model to guide early‐stage government regulatory action: Applications for synthetic biology," Regulation & Governance, John Wiley & Sons, vol. 12(1), pages 88-100, March.
    5. Dias, Rubens A. & Mattos, Cristiano R. & P. Balestieri, Jose A., 2006. "The limits of human development and the use of energy and natural resources," Energy Policy, Elsevier, vol. 34(9), pages 1026-1031, June.
    6. Höfer, Tim & von Nitzsch, Rüdiger & Madlener, Reinhard, 2019. "Using Value-Focused Thinking and Multi-Criteria Group Decision-Making to Evaluate Energy Transition Alternatives," FCN Working Papers 4/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    7. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    8. Szántó, Richárd, 2012. "Több szempontú részvételi döntések a fenntarthatósági értékelésekben. A legnépszerűbb módszerek összehasonlítása [Participatory multi-criteria decision analysis. A comparison of methodologies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1336-1355.
    9. Igor Linkov & Benjamin D. Trump & Elke Anklam & David Berube & Patrick Boisseasu & Christopher Cummings & Scott Ferson & Marie-Valentine Florin & Bernard Goldstein & Danail Hristozov & Keld Alstrup Je, 2018. "Comparative, collaborative, and integrative risk governance for emerging technologies," Environment Systems and Decisions, Springer, vol. 38(2), pages 170-176, June.
    10. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    11. Kayakutlu, Gulgun & Daim, Tugrul & Kunt, Meltem & Altay, Ayca & Suharto, Yulianto, 2017. "Scenarios for regional waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1323-1335.
    12. Dombi, Mihály & Kuti, István & Balogh, Péter, 2014. "Sustainability assessment of renewable power and heat generation technologies," Energy Policy, Elsevier, vol. 67(C), pages 264-271.
    13. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:30:y:2010:i:11:p:1708-1722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.