IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v28y2008i6p1699-1709.html
   My bibliography  Save this article

A Multinomial‐Dirichlet Model for Analysis of Competing Hypotheses

Author

Listed:
  • Kristin A. Duncan
  • Jonathan L. Wilson

Abstract

Analysis of competing hypothesis, a method for evaluating explanations of observed evidence, is used in numerous fields, including counterterrorism, psychology, and intelligence analysis. We propose a Bayesian extension of the methodology, posing the problem in terms of a multinomial‐Dirichlet hierarchical model. The yet‐to‐be observed true hypothesis is regarded as a multinomial random variable and the evaluation of the evidence is treated as a structured elicitation of a prior distribution on the probabilities of the hypotheses. This model provides the user with measures of uncertainty for the probabilities of the hypotheses. We discuss inference, such as point and interval estimates of hypothesis probabilities, ratios of hypothesis probabilities, and Bayes factors. A simple example involving the stadium relocation of the San Diego Chargers is used to illustrate the method. We also present several extensions of the model that enable it to handle special types of evidence, including evidence that is irrelevant to one or more hypotheses, evidence against hypotheses, and evidence that is subject to deception.

Suggested Citation

  • Kristin A. Duncan & Jonathan L. Wilson, 2008. "A Multinomial‐Dirichlet Model for Analysis of Competing Hypotheses," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1699-1709, December.
  • Handle: RePEc:wly:riskan:v:28:y:2008:i:6:p:1699-1709
    DOI: 10.1111/j.1539-6924.2008.01139.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2008.01139.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2008.01139.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Douglas L. Weed, 2005. "Weight of Evidence: A Review of Concept and Methods," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1545-1557, December.
    2. Elisabeth Paté‐Cornell, 2002. "Fusion of Intelligence Information: A Bayesian Approach," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 445-454, June.
    3. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Zhang & Ying-Ying Zhang, 2022. "The Bayesian Posterior and Marginal Densities of the Hierarchical Gamma–Gamma, Gamma–Inverse Gamma, Inverse Gamma–Gamma, and Inverse Gamma–Inverse Gamma Models with Conjugate Priors," Mathematics, MDPI, vol. 10(21), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    2. Avner Engel & Shalom Shachar, 2006. "Measuring and optimizing systems' quality costs and project duration," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 259-280, September.
    3. Atanasov, Pavel & Witkowski, Jens & Ungar, Lyle & Mellers, Barbara & Tetlock, Philip, 2020. "Small steps to accuracy: Incremental belief updaters are better forecasters," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 19-35.
    4. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    5. Franz Dietrich & Christian List, 2017. "Probabilistic opinion pooling generalized. Part one: general agendas," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 747-786, April.
    6. repec:cup:judgdm:v:13:y:2018:i:6:p:607-621 is not listed on IDEAS
    7. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    8. Chiara Franzoni & Paula Stephan & Reinhilde Veugelers, 2022. "Funding Risky Research," Entrepreneurship and Innovation Policy and the Economy, University of Chicago Press, vol. 1(1), pages 103-133.
    9. Robert F. Bordley, 2009. "Combining the Opinions of Experts Who Partition Events Differently," Decision Analysis, INFORMS, vol. 6(1), pages 38-46, March.
    10. Jason R. W. Merrick & J. Rene van Dorp & Jack Harrald & Thomas Mazzuchi & John E. Spahn & Martha Grabowski, 2000. "A systems approach to managing oil transportation risk in Prince William Sound," Systems Engineering, John Wiley & Sons, vol. 3(3), pages 128-142.
    11. Donnacha Bolger & Brett Houlding, 2016. "Reliability updating in linear opinion pooling for multiple decision makers," Journal of Risk and Reliability, , vol. 230(3), pages 309-322, June.
    12. Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
    13. Ine H. J. Van Der Fels‐Klerx & Louis H. J. Goossens & Helmut W. Saatkamp & Suzan H. S. Horst, 2002. "Elicitation of Quantitative Data from a Heterogeneous Expert Panel: Formal Process and Application in Animal Health," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 67-81, February.
    14. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
    15. Douglas L. Weed, 2006. "Vision, Values, and Verisimilitude: The Author's Response," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 577-577, June.
    16. Minh Ha-Duong, 2008. "Hierarchical fusion of expert opinion in the Transferable Belief Model, application on climate sensitivity," Post-Print halshs-00112129, HAL.
    17. Jahanbani, Zeinab & Ataee-pour, Majid & Mortazavi, Ali, 2024. "Application of Z-numbers theory to study the influencing criteria in underground mining method selection," Resources Policy, Elsevier, vol. 88(C).
    18. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    19. Franz Dietrich & Christian List, 2017. "Probabilistic opinion pooling generalized. Part two: the premise-based approach," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 787-814, April.
    20. Hongjun Fan & Hossein Enshaei & Shantha Gamini Jayasinghe, 2022. "Formation of Dataset for Fuzzy Quantitative Risk Assessment of LNG Bunkering SIMOPs," Data, MDPI, vol. 7(5), pages 1-13, May.
    21. Jeffrey M. Keisler, 2005. "Additivity of Information Value in Two‐Act Linear Loss Decisions with Normal Priors," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 351-359, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:28:y:2008:i:6:p:1699-1709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.