IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v24y2004i1p73-85.html
   My bibliography  Save this article

Estimating Contaminant Dose for Intermittent Dermal Contact: Model Development, Testing, and Application

Author

Listed:
  • W. J. Riley
  • T. E. McKone
  • E. A. Cohen Hubal

Abstract

Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure scenarios, skin surface loading and unloading rates, and contaminant movement through the epidermis. In this article we (1) develop and test a finite‐difference model of contaminant transport through the epidermis; (2) develop archetypal exposure scenarios based on behavioral data to estimate characteristic loading and unloading rates; and (3) quantify 24‐hour accumulation below the epidermis by applying a Monte Carlo simulation of these archetypal exposure scenarios. The numerical model, called Transient Transport through the epiDERMis (TTDERM), allows us to account for variable exposure times and time between exposures, temporal and spatial variations in skin and compound properties, and uncertainty in model parameters. Using TTDERM we investigate the use of a macro‐activity parameter (cumulative contact time) for predicting daily (24‐hour) integrated uptake of pesticides during complex exposure scenarios. For characteristic child behaviors and hand loading and unloading rates, we find that a power law represents the relationship between cumulative contact time and cumulative mass transport through the skin. With almost no loss of reliability, this simple relationship can be used in place of the more complex micro‐activity simulations that require activity data on one‐ to five‐minute intervals. The methods developed in this study can be used to guide dermal exposure model refinements and exposure measurement study design.

Suggested Citation

  • W. J. Riley & T. E. McKone & E. A. Cohen Hubal, 2004. "Estimating Contaminant Dose for Intermittent Dermal Contact: Model Development, Testing, and Application," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 73-85, February.
  • Handle: RePEc:wly:riskan:v:24:y:2004:i:1:p:73-85
    DOI: 10.1111/j.0272-4332.2004.00413.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2004.00413.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2004.00413.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Frederick Frasch, 2002. "A Random Walk Model of Skin Permeation," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 265-276, April.
    2. Thomas E. McKone & Robert A. Howd, 1992. "Estimating Dermal Uptake of Nonionic Organic Chemicals from Water and Soil: I. Unified Fugacity‐Based Models for Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 12(4), pages 543-557, December.
    3. James N. McDougal & Julia L. Jurgens‐Whitehead, 2001. "Short‐Term Dermal Absorption and Penetration of Chemicals from Aqueous Solutions: Theory and Experiment," Risk Analysis, John Wiley & Sons, vol. 21(4), pages 719-726, August.
    4. A. Roy & C. P. Weisel & P. J. Lioy & P. G. Georgopoulos, 1996. "A Distributed Parameter Physiologically‐Based Pharmacokinetic Model for Dermal and Inhalation Exposure to Volatile Organic Compounds," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 147-160, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Krüse & Christel W. E. Verberk, 2008. "Modelling of systemic uptake of agrochemicals after dermal exposure; effects of formulation, application and exposure scenarios," Environment Systems and Decisions, Springer, vol. 28(1), pages 57-65, March.
    2. Michael R. Adams & Cynthia A. Hanna & Janet A. Mayernik & William M. Mendez, 1994. "Probabilistic Health Risk Assessment for Exposures to Estuary Sediments and Biota Contaminated with Polychlorinated Biphenyls, Polychlorinated Terphenyls and Other Toxic Substances," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 577-594, August.
    3. Mohammad S. Islam & Luhua Zhao & Joseph Zhou & Lilly Dong & James N. McDougal & Gordon L. Flynn, 1996. "Systemic Uptake and Clearance of Chloroform by Hairless Rats Following Dermal Exposure. I. Brief Exposure to Aqueous Solutions," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 349-357, June.
    4. H. Frederick Frasch, 2002. "A Random Walk Model of Skin Permeation," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 265-276, April.
    5. Kenneth T. Bogen, 2013. "Dermal Uptake of 18 Dilute Aqueous Chemicals: In Vivo Disappearance‐Method Measures Greatly Exceed In Vitro‐Based Predictions," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1334-1352, July.
    6. Jaspreet S. Gujral & Deborah M. Proctor & Steave H. Su & Joseph M. Fedoruk, 2011. "Water Adherence Factors for Human Skin," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1271-1280, August.
    7. Mark P. van Veen, 1996. "A General Model for Exposure and Uptake from Consumer Products," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 331-338, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:24:y:2004:i:1:p:73-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.