IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v16y1996i1p67-79.html
   My bibliography  Save this article

Risk‐Based Environmental Remediation: Bayesian Monte Carlo Analysis and the Expected Value of Sample Information

Author

Listed:
  • Maxine E. Dakins
  • John E. Toll
  • Mitchell J. Small
  • Kevin P. Brand

Abstract

A methodology that simulates outcomes from future data collection programs, utilizes Bayesian Monte Carlo analysis to predict the resulting reduction in uncertainty in an environmental fate‐and‐transport model, and estimates the expected value of this reduction in uncertainty to a risk‐based environmental remediation decision is illustrated considering polychlorinated biphenyl (PCB) sediment contamination and uptake by winter flounder in New Bedford Harbor, MA. The expected value of sample information (EVSI), the difference between the expected loss of the optimal decision based on the prior uncertainty analysis and the expected loss of the optimal decision from an updated information state, is calculated for several sampling plan. For the illustrative application we have posed, the EVSI for a sampling plan of two data points is $9.4 million, for five data points is $10.4 million, and for ten data points is $11.5 million. The EVSI for sampling plans involving larger numbers of data points is bounded by the expected value of perfect information, $15.6 million. A sensitivity analysis is conducted to examine the effect of selected model structure and parametric assumptions on the optimal decision and the EVSI. The optimal decision (total area to be dredged) is sensitive to the assumption of linearity between PCB sediment concentration and flounder PCB body burden and to the assumed relationship between area dredged and the harbor‐wide average sediment PCB concentration; these assumptions also have a moderate impact on the computed EVSI. The EVSI is most sensitive to the unit cost of remediation and rather insensitive to the penalty cost associated with under‐remediation.

Suggested Citation

  • Maxine E. Dakins & John E. Toll & Mitchell J. Small & Kevin P. Brand, 1996. "Risk‐Based Environmental Remediation: Bayesian Monte Carlo Analysis and the Expected Value of Sample Information," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 67-79, February.
  • Handle: RePEc:wly:riskan:v:16:y:1996:i:1:p:67-79
    DOI: 10.1111/j.1539-6924.1996.tb01437.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1996.tb01437.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1996.tb01437.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronald L. Iman & Jon C. Helton, 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 71-90, March.
    2. Anand Patwardhan & Mitchell J. Small, 1992. "Bayesian Methods for Model Uncertainty Analysis with Application to Future Sea Level Rise," Risk Analysis, John Wiley & Sons, vol. 12(4), pages 513-523, December.
    3. Tracey J. Woodruff & Frédéric Y. Bois & David Auslander & Robert C. Spear, 1992. "Structure and Parameterization of Pharmacokinetic Models: Their Impact on Model Predictions," Risk Analysis, John Wiley & Sons, vol. 12(2), pages 189-201, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    2. Kan Shao & Mitchell J. Small, 2011. "Potential Uncertainty Reduction in Model‐Averaged Benchmark Dose Estimates Informed by an Additional Dose Study," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1561-1575, October.
    3. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Literature Analysis: A Review of Applications in Health Risk Management," Medical Decision Making, , vol. 24(3), pages 287-298, June.
    4. A. E. Ades & S. Cliffe, 2002. "Markov Chain Monte Carlo Estimation of a Multiparameter Decision Model: Consistency of Evidence and the Accurate Assessment of Uncertainty," Medical Decision Making, , vol. 22(4), pages 359-371, August.
    5. John D. Graham, 2001. "Decision-analytic refinements of the precautionary principle," Journal of Risk Research, Taylor & Francis Journals, vol. 4(2), pages 127-141, April.
    6. Byron K Williams & Fred A Johnson, 2018. "Value of sample information in dynamic, structurally uncertain resource systems," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    7. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    8. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin P. Brand & Mitchell J. Small, 1995. "Updating Uncertainty in an Integrated Risk Assessment: Conceptual Framework and Methods," Risk Analysis, John Wiley & Sons, vol. 15(6), pages 719-729, December.
    2. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    3. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    4. Isabelle Albert & Emmanuel Grenier & Jean‐Baptiste Denis & Judith Rousseau, 2008. "Quantitative Risk Assessment from Farm to Fork and Beyond: A Global Bayesian Approach Concerning Food‐Borne Diseases," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 557-571, April.
    5. Lee, Sang-Hee & Park, Cheol-Min, 2022. "The effect of hunter-wild boar interactions and landscape heterogeneity on wild boar population size: A simulation study," Ecological Modelling, Elsevier, vol. 464(C).
    6. Shabbir Ahmed Osmani & Foysol Mahmud, 2021. "An integrated approach of machine algorithms with multi-objective optimization in performance analysis of event detection," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1976-1993, February.
    7. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    8. Nicolas A. Menzies & Brian W. Allwood & Anna S. Dean & Pete J. Dodd & Rein M. G. J. Houben & Lyndon P. James & Gwenan M. Knight & Jamilah Meghji & Linh N. Nguyen & Andrea Rachow & Samuel G. Schumacher, 2023. "Global burden of disease due to rifampicin-resistant tuberculosis: a mathematical modeling analysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Alan H. Stern, 1993. "Re‐evaluation of the Reference Dose for Methylmercury and Assessment of Current Exposure Levels," Risk Analysis, John Wiley & Sons, vol. 13(3), pages 355-364, June.
    10. Wout Slob, 1994. "Uncertainty Analysis in Multiplicative Models," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 571-576, August.
    11. James K. Hammitt, 1990. "Subjective‐Probability‐Based Scenarios for Uncertain Input Parameters: Stratospheric Ozone Depletion," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 93-102, March.
    12. Yizhen Wang & Menglei Cui & Jiong Guo & Han Zhang & Yingjie Wu & Fu Li, 2023. "Decay Branch Ratio Sampling Method with Dirichlet Distribution," Energies, MDPI, vol. 16(4), pages 1-17, February.
    13. Gorka Merino & Hilario Murua & Josu Santiago & Haritz Arrizabalaga & Victor Restrepo, 2020. "Characterization, Communication, and Management of Uncertainty in Tuna Fisheries," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    14. Messan, Komi & Rodriguez Messan, Marisabel & Chen, Jun & DeGrandi-Hoffman, Gloria & Kang, Yun, 2021. "Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality," Ecological Modelling, Elsevier, vol. 440(C).
    15. Tschang, F. Ted & Dowlatabadi, Hadi, 1995. "A Bayesian technique for refining the uncertainty in global energy model forecasts," International Journal of Forecasting, Elsevier, vol. 11(1), pages 43-61, March.
    16. Catenacci, Michela & Giupponi, Carlo, 2010. "Potentials and Limits of Bayesian Networks to Deal with Uncertainty in the Assessment of Climate Change Adaptation Policies," Sustainable Development Papers 59385, Fondazione Eni Enrico Mattei (FEEM).
    17. Ronald L. Iman & Mark E. Johnson & Charles C. Watson, 2005. "Uncertainty Analysis for Computer Model Projections of Hurricane Losses," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1299-1312, October.
    18. Leona H. Clark & R. Woodrow Setzer & Hugh A. Barton, 2004. "Framework for Evaluation of Physiologically‐Based Pharmacokinetic Models for Use in Safety or Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1697-1717, December.
    19. M. Kadohira & M. A. Stevenson & H. R. Høgåsen & A. de Koeijer, 2012. "A Quantitative Risk Assessment for Bovine Spongiform Encephalopathy in Japan," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2198-2208, December.
    20. Karen H. Watanabe & Frédéric Y. Bois, 1996. "Interspecies Extrapolation of Physiological Pharmacokinetic Parameter Distributions," Risk Analysis, John Wiley & Sons, vol. 16(6), pages 741-754, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:16:y:1996:i:1:p:67-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.