IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v15y1995i1p69-78.html
   My bibliography  Save this article

Managing the Risk of Global Climate Catastrophe: An Uncertainty Analysis

Author

Listed:
  • Hung‐po Chao

Abstract

Despite much scientific progress over many decades, the nature of global climate change remains highly uncertain, and the possibility of global climate catastrophe is one of the main concerns in public debates about global climate change. In this paper, we present a model which incorporates the risk of climate catastrophe in an analysis of greenhouse gas abatement strategy. In this model, the timing and severity of climate catastrophe are treated probabilistically. The impacts of key uncertainties on optimal policy are analyzed, and the expected values of additional information that reduces the uncertainty associated with the world economy, carbon cycle, climate change, and climate damage are estimated.

Suggested Citation

  • Hung‐po Chao, 1995. "Managing the Risk of Global Climate Catastrophe: An Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 69-78, February.
  • Handle: RePEc:wly:riskan:v:15:y:1995:i:1:p:69-78
    DOI: 10.1111/j.1539-6924.1995.tb00094.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1995.tb00094.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1995.tb00094.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    2. Alan S. Manne & Richard G. Richels, 1990. "C02 Emission Limits: An Economic Cost Analysis for the USA," The Energy Journal, , vol. 11(2), pages 51-75, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shogren, Jason F. & Toman, Michael, 2000. "Climate Change Policy," Discussion Papers 10767, Resources for the Future.
    2. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharyya, Subhes C., 1996. "Applied general equilibrium models for energy studies: a survey," Energy Economics, Elsevier, vol. 18(3), pages 145-164, July.
    2. Barron, Eric & Chapman, Duane & Khanna, Neha & Rose, Adam Z. & Schultz, Peter A. & Kasting, James F., 1996. "Penn State -Cornell Integrated Assessment Model," Working Papers 127929, Cornell University, Department of Applied Economics and Management.
    3. Ekins, Paul, 1996. "How large a carbon tax is justified by the secondary benefits of CO2 abatement?," Resource and Energy Economics, Elsevier, vol. 18(2), pages 161-187, June.
    4. Sylvie Geisendorf, 2016. "The impact of personal beliefs on climate change: the “battle of perspectives” revisited," Journal of Evolutionary Economics, Springer, vol. 26(3), pages 551-580, July.
    5. Nordhaus, William D, 1995. "The ghosts of climates past and the specters of climate change future," Energy Policy, Elsevier, vol. 23(4-5), pages 269-282.
    6. John Reilly & Kenneth Richards, 1993. "Climate change damage and the trace gas index issue," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 3(1), pages 41-61, February.
    7. John P. Weyant, 1993. "Costs of Reducing Global Carbon Emissions," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 27-46, Fall.
    8. William D. Nordhaus, 1993. "Reflections on the Economics of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 11-25, Fall.
    9. Ruiz Estrada, Mario Arturo, 2013. "The Macroeconomics evaluation of Climate Change Model (MECC-Model): The case Study of China," MPRA Paper 49158, University Library of Munich, Germany, revised 18 Aug 2013.
    10. Khanna, Neha & Chapman, Duane, 1997. "Climate Policy and Petroleum Depletion in an Optimal Growth Framework," Staff Papers 121172, Cornell University, Department of Applied Economics and Management.
    11. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    12. Greiner, Alfred & Semmler, Willi, 2005. "Economic growth and global warming: A model of multiple equilibria and thresholds," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 430-447, August.
    13. Toth, Ferenc L, 1995. "Discounting in integrated assessments of climate change," Energy Policy, Elsevier, vol. 23(4-5), pages 403-409.
    14. Fankhauser, Samuel & Kverndokk, Snorre, 1996. "The global warming game -- Simulations of a CO2-reduction agreement," Resource and Energy Economics, Elsevier, vol. 18(1), pages 83-102, March.
    15. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    16. Richard S.J. Tol & Samuel Fankhauser & Richard G. Richels & Joel B. Smith, 2000. "How Much Damage Will Climate Change Do? Recent Estimates," Working Papers FNU-2, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2000.
    17. Lawrence H. Goulder, 1992. "Do the Costs of a Carbon Tax Vanish When Interactions With Other Taxes are Accounted For?," NBER Working Papers 4061, National Bureau of Economic Research, Inc.
    18. Sue Wing, Ian & Eckaus, Richard S., 2007. "The implications of the historical decline in US energy intensity for long-run CO2 emission projections," Energy Policy, Elsevier, vol. 35(11), pages 5267-5286, November.
    19. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    20. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:15:y:1995:i:1:p:69-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.