IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v21y2010i2p117-135.html
   My bibliography  Save this article

Thermal state of permafrost in North America: a contribution to the international polar year

Author

Listed:
  • S.L. Smith
  • V.E. Romanovsky
  • A.G. Lewkowicz
  • C.R. Burn
  • M. Allard
  • G.D. Clow
  • K. Yoshikawa
  • J. Throop

Abstract

A snapshot of the thermal state of permafrost in northern North America during the International Polar Year (IPY) was developed using ground temperature data collected from 350 boreholes. More than half these were established during IPY to enhance the network in sparsely monitored regions. The measurement sites span a diverse range of ecoclimatic and geological conditions across the continent and are at various elevations within the Cordillera. The ground temperatures within the discontinuous permafrost zone are generally above −3°C, and range down to −15°C in the continuous zone. Ground temperature envelopes vary according to substrate, with shallow depths of zero annual amplitude for peat and mineral soils, and much greater depths for bedrock. New monitoring sites in the mountains of southern and central Yukon suggest that permafrost may be limited in extent. In concert with regional air temperatures, permafrost has generally been warming across North America for the past several decades, as indicated by measurements from the western Arctic since the 1970s and from parts of eastern Canada since the early 1990s. The rates of ground warming have been variable, but are generally greater north of the treeline. Latent heat effects in the southern discontinuous zone dominate the permafrost thermal regime close to 0°C and allow permafrost to persist under a warming climate. Consequently, the spatial diversity of permafrost thermal conditions is decreasing over time. Copyright © 2010 Crown in the right of Canada and John Wiley & Sons, Ltd.

Suggested Citation

  • S.L. Smith & V.E. Romanovsky & A.G. Lewkowicz & C.R. Burn & M. Allard & G.D. Clow & K. Yoshikawa & J. Throop, 2010. "Thermal state of permafrost in North America: a contribution to the international polar year," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(2), pages 117-135, April.
  • Handle: RePEc:wly:perpro:v:21:y:2010:i:2:p:117-135
    DOI: 10.1002/ppp.690
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.690
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.
    2. Suzanne E. Tank & Jorien E. Vonk & Michelle A. Walvoord & James W. McClelland & Isabelle Laurion & Benjamin W. Abbott, 2020. "Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 358-370, July.
    3. Pavel Konstantinov & Nikolai Basharin & Alexander Fedorov & Yoshihiro Iijima & Varvara Andreeva & Valerii Semenov & Nikolai Vasiliev, 2022. "Impact of Climate Change on the Ground Thermal Regime in the Lower Lena Region, Arctic Central Siberia," Land, MDPI, vol. 12(1), pages 1-13, December.
    4. Alain Lubini Tshumuka & Abdelkader Krimi & Musandji Fuamba, 2022. "Modeling Heat Transfer through Permafrost Soil Subjected to Seasonal Freeze-Thaw," Land, MDPI, vol. 11(10), pages 1-19, October.
    5. Madeleine C. Garibaldi & Philip P. Bonnaventure & Scott F. Lamoureux, 2021. "Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 19-34, January.
    6. Yifan Wu & Guojie Hu & Lin Zhao & Defu Zou & Xiaofan Zhu & Yao Xiao & Tonghua Wu & Xiaodong Wu & Youqi Su & Rui Zhang, 2024. "Assessment of Soil Temperature and Its Change Trends in the Permafrost Regions of the Northern Hemisphere," Land, MDPI, vol. 13(7), pages 1-14, July.
    7. Christian Huggel & Dáithí Stone & Hajo Eicken & Gerrit Hansen, 2015. "Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies," Climatic Change, Springer, vol. 133(3), pages 453-467, December.
    8. Julia Bosiö & Margareta Johansson & Terry Callaghan & Bernt Johansen & Torben Christensen, 2012. "Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment," Climatic Change, Springer, vol. 115(2), pages 379-398, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:21:y:2010:i:2:p:117-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.