Modeling Heat Transfer through Permafrost Soil Subjected to Seasonal Freeze-Thaw
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Liudmila Lebedeva & Olga Semenova & Tatyana Vinogradova, 2014. "Simulation of Active Layer Dynamics, Upper Kolyma, Russia, using the Hydrograph Hydrological Model," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 25(4), pages 270-280, October.
- Xie Changwei & William A. Gough, 2013. "A Simple Thaw‐Freeze Algorithm for a Multi‐Layered Soil using the Stefan Equation," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 24(3), pages 252-260, July.
- Daniel Riseborough & Nikolay Shiklomanov & Bernd Etzelmüller & Stephan Gruber & Sergei Marchenko, 2008. "Recent advances in permafrost modelling," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(2), pages 137-156, April.
- Olga Semenova & Yury Vinogradov & Tatyana Vinogradova & Luidmila Lebedeva, 2014. "Simulation of Soil Profile Heat Dynamics and their Integration into Hydrologic Modelling in a Permafrost Zone," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 25(4), pages 257-269, October.
- S.L. Smith & V.E. Romanovsky & A.G. Lewkowicz & C.R. Burn & M. Allard & G.D. Clow & K. Yoshikawa & J. Throop, 2010. "Thermal state of permafrost in North America: a contribution to the international polar year," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(2), pages 117-135, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Madeleine C. Garibaldi & Philip P. Bonnaventure & Scott F. Lamoureux, 2021. "Utilizing the TTOP model to understand spatial permafrost temperature variability in a High Arctic landscape, Cape Bounty, Nunavut, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 19-34, January.
- Julia Bosiö & Margareta Johansson & Terry Callaghan & Bernt Johansen & Torben Christensen, 2012. "Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment," Climatic Change, Springer, vol. 115(2), pages 379-398, November.
- Christian Huggel & Dáithí Stone & Hajo Eicken & Gerrit Hansen, 2015. "Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies," Climatic Change, Springer, vol. 133(3), pages 453-467, December.
- Suzanne E. Tank & Jorien E. Vonk & Michelle A. Walvoord & James W. McClelland & Isabelle Laurion & Benjamin W. Abbott, 2020. "Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 358-370, July.
- Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.
- Miao Yu & Nadezhda Pavlova & Changlei Dai & Xianfeng Guo & Xiaohong Zhang & Shuai Gao & Yiru Wei, 2023. "Simulation and Analysis of the Dynamic Characteristics of Groundwater in Taliks in the Eruu Area, Central Yakutia," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
- Yanyu Zhang & Shuying Zang & Miao Li & Xiangjin Shen & Yue Lin, 2021. "Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018," Land, MDPI, vol. 10(11), pages 1-13, October.
- Pavel Konstantinov & Nikolai Basharin & Alexander Fedorov & Yoshihiro Iijima & Varvara Andreeva & Valerii Semenov & Nikolai Vasiliev, 2022. "Impact of Climate Change on the Ground Thermal Regime in the Lower Lena Region, Arctic Central Siberia," Land, MDPI, vol. 12(1), pages 1-13, December.
- Yifan Wu & Guojie Hu & Lin Zhao & Defu Zou & Xiaofan Zhu & Yao Xiao & Tonghua Wu & Xiaodong Wu & Youqi Su & Rui Zhang, 2024. "Assessment of Soil Temperature and Its Change Trends in the Permafrost Regions of the Northern Hemisphere," Land, MDPI, vol. 13(7), pages 1-14, July.
More about this item
Keywords
Stefan problem; permafrost; active layer; finite difference; iterative method; thaw depth;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1770-:d:940076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.