IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v65y2018i4p303-316.html
   My bibliography  Save this article

Full characterization of the nonnegative core of some cooperative games

Author

Listed:
  • Shoshana Anily

Abstract

We propose a method to design cost allocation contracts that help maintain the stability of strategic alliances among firms by using cooperative game theory. The partners of the alliance increase their efficiency by sharing their assets. We introduce a new sufficient condition for total balancedness of regular games, and a full characterization of their nonnegative core. A regular game is defined by a finite number of resources owned by the players. The initial cost of a player is a function of the vector of quantities of the resources that the player owns. The characteristic function value of a coalition is a symmetric real function of the vectors of its members. Within this class we focus on centralizing aggregation games, meaning that the formation of a coalition is equivalent to aggregating its players into one artificial player whose cost is an intermediate value of the costs of the aggregated players. We prove that under a certain decreasing variation condition, a centralizing aggregation game is totally balanced and its nonnegative core is fully characterized. We present a few nonconcave games in operations management that their nonnegative core is fully characterized, by showing that they satisfy the conditions presented in this article.

Suggested Citation

  • Shoshana Anily, 2018. "Full characterization of the nonnegative core of some cooperative games," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(4), pages 303-316, June.
  • Handle: RePEc:wly:navres:v:65:y:2018:i:4:p:303-316
    DOI: 10.1002/nav.21806
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21806
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shoshana Anily & Moshe Haviv, 2017. "Line Balancing in Parallel M/M/1 Lines and Loss Systems as Cooperative Games," Production and Operations Management, Production and Operations Management Society, vol. 26(8), pages 1568-1584, August.
    2. Inarra, Elena & Usategui, Jose M, 1993. "The Shapley Value and Average Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(1), pages 13-29.
    3. Xing Hu & René Caldentey & Gustavo Vulcano, 2013. "Revenue Sharing in Airline Alliances," Management Science, INFORMS, vol. 59(5), pages 1177-1195, May.
    4. Jack Rogers, 1958. "A Computational Approach to the Economic Lot Scheduling Problem," Management Science, INFORMS, vol. 4(3), pages 264-291, April.
    5. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    6. Shoshana Anily & Moshe Haviv, 2014. "Subadditive and Homogeneous of Degree One Games Are Totally Balanced," Operations Research, INFORMS, vol. 62(4), pages 788-793, August.
    7. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
    8. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    9. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    10. Shoshana Anily & Moshe Haviv, 2010. "Cooperation in Service Systems," Operations Research, INFORMS, vol. 58(3), pages 660-673, June.
    11. J. Drechsel & A. Kimms, 2010. "The subcoalition-perfect core of cooperative games," Annals of Operations Research, Springer, vol. 181(1), pages 591-601, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).
    2. Chu, Xiang & Liu, Jun & Ren, Long & Gong, Daqing, 2020. "Optimal contract design with a common agency in last-mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    3. Ulaş Özen & Marco Slikker & Greys Sošić, 2022. "On the core of m$m$‐attribute games," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1770-1787, April.
    4. Zhanwen Shi & Erbao Cao & Kai Nie, 2023. "Capacity pooling games in crowdsourcing services," Electronic Commerce Research, Springer, vol. 23(2), pages 1007-1047, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lotty E. Westerink‐Duijzer & Loe P. J. Schlicher & Marieke Musegaas, 2020. "Core Allocations for Cooperation Problems in Vaccination," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1720-1737, July.
    2. Westerink-Duijzer, L.E. & Schlicher, L.P.J. & Musegaas, M., 2019. "Fair allocations for cooperation problems in vaccination," Econometric Institute Research Papers EI2019-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Loe Schlicher & Marco Slikker & Willem van Jaarsveld & Geert-Jan van Houtum, 2020. "Core Nonemptiness of Stratified Pooling Games: A Structured Markov Decision Process Approach," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1445-1465, November.
    4. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).
    5. Ulaş Özen & Marco Slikker & Greys Sošić, 2022. "On the core of m$m$‐attribute games," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1770-1787, April.
    6. Shoshana Anily & Moshe Haviv, 2014. "Subadditive and Homogeneous of Degree One Games Are Totally Balanced," Operations Research, INFORMS, vol. 62(4), pages 788-793, August.
    7. Dehez, Pierre & Ferey, Samuel, 2013. "How to share joint liability: A cooperative game approach," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 44-50.
    8. G Reinhardt & M Dada, 2005. "Allocating the gains from resource pooling with the Shapley Value," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 997-1000, August.
    9. S. Flåm & L. Koutsougeras, 2010. "Private information, transferable utility, and the core," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(3), pages 591-609, March.
    10. M. Fiestras-Janeiro & Ignacio García-Jurado & Manuel Mosquera, 2011. "Cooperative games and cost allocation problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-22, July.
    11. Stefano Moretti & Fioravante Patrone, 2008. "Transversality of the Shapley value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-41, July.
    12. Frank Karsten & Marco Slikker & Geert-Jan van Houtum, 2015. "Resource Pooling and Cost Allocation Among Independent Service Providers," Operations Research, INFORMS, vol. 63(2), pages 476-488, April.
    13. Yang, Jian & Li, Jianbin, 2020. "Cooperative game with nondeterministic returns," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 123-140.
    14. Louis de Mesnard, 2015. "The three wives problem and Shapley value," Post-Print hal-01091714, HAL.
    15. Jean-François Caulier, 2009. "A note on the monotonicity and superadditivity of TU cooperative games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00633612, HAL.
    16. Lindong Liu & Yuqian Zhou & Zikang Li, 2022. "Lagrangian heuristic for simultaneous subsidization and penalization: implementations on rooted travelling salesman games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 81-99, February.
    17. Algaba, Encarnación & Fragnelli, Vito & Llorca, Natividad & Sánchez-Soriano, Joaquin, 2019. "Horizontal cooperation in a multimodal public transport system: The profit allocation problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 659-665.
    18. Fatma Aslan & Papatya Duman & Walter Trockel, 2019. "Duality for General TU-games Redefined," Working Papers CIE 121, Paderborn University, CIE Center for International Economics.
    19. Flip Klijn & Stef Tijs & Marco Slikker, 2001. "A Dual Egalitarian Solution," Economics Bulletin, AccessEcon, vol. 3(10), pages 1-8.
    20. Michel Le Breton & Karine Van der Straeten, 2013. "Alliances électorales entre deux tours de scrutin. Le point de vue de la théorie des jeux coopératifs et une application aux élections régionales de mars 2010," Revue économique, Presses de Sciences-Po, vol. 64(2), pages 173-240.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:65:y:2018:i:4:p:303-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.