IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v65y2018i1p86-97.html
   My bibliography  Save this article

Mean residual life of coherent systems consisting of multiple types of dependent components

Author

Listed:
  • Serkan Eryilmaz
  • Frank P.A. Coolen
  • Tahani Coolen‐Maturi

Abstract

Mean residual life is a useful dynamic characteristic to study reliability of a system. It has been widely considered in the literature not only for single unit systems but also for coherent systems. This article is concerned with the study of mean residual life for a coherent system that consists of multiple types of dependent components. In particular, the survival signature based generalized mixture representation is obtained for the survival function of a coherent system and it is used to evaluate the mean residual life function. Furthermore, two mean residual life functions under different conditional events on components’ lifetimes are also defined and studied.

Suggested Citation

  • Serkan Eryilmaz & Frank P.A. Coolen & Tahani Coolen‐Maturi, 2018. "Mean residual life of coherent systems consisting of multiple types of dependent components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 86-97, February.
  • Handle: RePEc:wly:navres:v:65:y:2018:i:1:p:86-97
    DOI: 10.1002/nav.21782
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21782
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reed, Sean, 2017. "An efficient algorithm for exact computation of system and survival signatures using binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 257-267.
    2. Jorge Navarro & Maria Longobardi & Franco Pellerey, 2017. "Comparison results for inactivity times of k-out-of-n and general coherent systems with dependent components," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 822-846, December.
    3. Feng, Geng & Patelli, Edoardo & Beer, Michael & Coolen, Frank P.A., 2016. "Imprecise system reliability and component importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 116-125.
    4. Jorge Navarro & Pedro Hernandez, 2008. "Mean residual life functions of finite mixtures, order statistics and coherent systems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(3), pages 277-298, April.
    5. Konul Bayramoglu Kavlak, 2017. "Reliability and mean residual life functions of coherent systems in an active redundancy," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 19-28, February.
    6. Jorge Navarro & Fabio Spizzichino, 2010. "Comparisons of series and parallel systems with components sharing the same copula," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(6), pages 775-791, November.
    7. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, April.
    8. Serkan Eryilmaz, 2017. "The concept of weak exchangeability and its applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(3), pages 259-271, April.
    9. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    10. Jorge Navarro & M. Carmen Gomis, 2016. "Comparisons in the mean residual life order of coherent systems with identically distributed components," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(1), pages 33-47, January.
    11. Navarro, Jorge & Durante, Fabrizio, 2017. "Copula-based representations for the reliability of the residual lifetimes of coherent systems with dependent components," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 87-102.
    12. Patryk Miziuła & Jorge Navarro, 2017. "Sharp bounds for the reliability of systems and mixtures with ordered components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 108-116, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Navarro & Julio Mulero, 2020. "Comparisons of coherent systems under the time-transformed exponential model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 255-281, March.
    2. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Eryilmaz, Serkan & Ozkut, Murat, 2020. "Optimization problems for a parallel system with multiple types of dependent components," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    5. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    2. Eryilmaz, Serkan & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2018. "Marginal and joint reliability importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 118-128.
    3. Sareh Goli, 2019. "On the conditional residual lifetime of coherent systems under double regularly checking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 352-363, June.
    4. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    5. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Coolen-Maturi, Tahani & Coolen, Frank P.A. & Balakrishnan, Narayanaswamy, 2021. "The joint survival signature of coherent systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    8. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. repec:bpj:demode:v:6:y:2018:i:1:p:156-177:n:10 is not listed on IDEAS
    12. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.
    13. Jorge Navarro, 2018. "Distribution-free comparisons of residual lifetimes of coherent systems based on copula properties," Statistical Papers, Springer, vol. 59(2), pages 781-800, June.
    14. Behrensdorf, Jasper & Regenhardt, Tobias-Emanuel & Broggi, Matteo & Beer, Michael, 2021. "Numerically efficient computation of the survival signature for the reliability analysis of large networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    16. Elham Khaleghpanah Noughabi & Majid Chahkandi & Majid Rezaei, 2022. "On the Mean and Variance Residual Life Comparisons of Coherent Systems with Identically Distributed Components," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2801-2822, December.
    17. Qin, Jinlei & Coolen, Frank P.A., 2022. "Survival signature for reliability evaluation of a multi-state system with multi-state components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Antonio Arriaza & Jorge Navarro & Alfonso Suárez‐Llorens, 2018. "Stochastic comparisons of replacement policies in coherent systems under minimal repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 550-565, September.
    19. Navarro, Jorge & Durante, Fabrizio, 2017. "Copula-based representations for the reliability of the residual lifetimes of coherent systems with dependent components," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 87-102.
    20. Jorge Navarro & Maria Longobardi & Franco Pellerey, 2017. "Comparison results for inactivity times of k-out-of-n and general coherent systems with dependent components," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 822-846, December.
    21. Wang, Shaoxuan & Yao, Yuantao & Ge, Daochuan & Lin, Zhixian & Wu, Jie & Yu, Jie, 2023. "Reliability evaluation of standby redundant systems based on the survival signatures methods," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:65:y:2018:i:1:p:86-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.