IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v61y2014i7p532-548.html
   My bibliography  Save this article

Sequential learning versus no learning in Bayesian regression models

Author

Listed:
  • Katy S. Azoury
  • Julia Miyaoka

Abstract

We consider two regression models: linear and logistic. The dependent variable is observed periodically and in each period a Bayesian formulation is used to generate updated forecasts of the dependent variable as new data is observed. One would expect that including new data in the Bayesian updates results in improved forecasts over not including the new data. Our findings indicate that this is not always true. We show there exists a subset of the independent variable space that we call the “region of no learning.” If the independent variable values for a given period in the future are in this region, then the forecast does not change with any new data. Moreover, if the independent variable values are in a neighborhood of the region of no learning, then there may be little benefit to wait for the new data and update the forecast. We propose a statistical approach to characterize this neighborhood which we call the “region of little learning.” Our results provide insights into the trade‐offs that exist in situations when the decision maker has an incentive to make an early decision based on an early forecast versus waiting to make a later decision based on an updated forecast. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 532–548, 2014

Suggested Citation

  • Katy S. Azoury & Julia Miyaoka, 2014. "Sequential learning versus no learning in Bayesian regression models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 532-548, October.
  • Handle: RePEc:wly:navres:v:61:y:2014:i:7:p:532-548
    DOI: 10.1002/nav.21601
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21601
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li Chen & Erica L. Plambeck, 2008. "Dynamic Inventory Management with Learning About the Demand Distribution and Substitution Probability," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 236-256, May.
    2. Victor F. Araman & René Caldentey, 2009. "Dynamic Pricing for Nonperishable Products with Demand Learning," Operations Research, INFORMS, vol. 57(5), pages 1169-1188, October.
    3. Vivek F. Farias & Benjamin Van Roy, 2010. "Dynamic Pricing with a Prior on Market Response," Operations Research, INFORMS, vol. 58(1), pages 16-29, February.
    4. Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
    5. Andy A. Tsay, 1999. "The Quantity Flexibility Contract and Supplier-Customer Incentives," Management Science, INFORMS, vol. 45(10), pages 1339-1358, October.
    6. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    7. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    8. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    9. Eric Cope, 2007. "Bayesian strategies for dynamic pricing in e‐commerce," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 265-281, April.
    10. Giora Harpaz & Wayne Y. Lee & Robert L. Winkler, 1982. "Learning, Experimentation, and the Optimal Output Decisions of a Competitive Firm," Management Science, INFORMS, vol. 28(6), pages 589-603, June.
    11. Ananth. V. Iyer & Mark E. Bergen, 1997. "Quick Response in Manufacturer-Retailer Channels," Management Science, INFORMS, vol. 43(4), pages 559-570, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Zhang, Juliang & Hua, Guowei, 2016. "Multi-period inventory games with information update," International Journal of Production Economics, Elsevier, vol. 174(C), pages 119-127.
    2. Philipp Afèche & Barış Ata, 2013. "Bayesian Dynamic Pricing in Queueing Systems with Unknown Delay Cost Characteristics," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 292-304, May.
    3. Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
    4. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    5. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    6. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    7. Deligiannis, Michalis & Liberopoulos, George & Pandelis, Dimitrios G., 2023. "Managing supply chain risks with dual sourcing: Bayesian learning of censored supply capacity," International Journal of Production Economics, Elsevier, vol. 265(C).
    8. Arnoud V. den Boer, 2014. "Dynamic Pricing with Multiple Products and Partially Specified Demand Distribution," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 863-888, August.
    9. Li, Tianyun & Fang, Weiguo & Baykal-Gürsoy, Melike, 2021. "Two-stage inventory management with financing under demand updates," International Journal of Production Economics, Elsevier, vol. 232(C).
    10. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    11. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    12. Alain Bensoussan & Qi Feng & Suresh P. Sethi, 2011. "Achieving a Long-Term Service Target with Periodic Demand Signals: A Newsvendor Framework," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 73-88, February.
    13. Adam J. Mersereau, 2015. "Demand Estimation from Censored Observations with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 335-349, July.
    14. Arnab Bisi & Maqbool Dada & Surya Tokdar, 2011. "A Censored-Data Multiperiod Inventory Problem with Newsvendor Demand Distributions," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 525-533, October.
    15. Li Chen, 2010. "Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales," Operations Research, INFORMS, vol. 58(2), pages 396-413, April.
    16. Marban, S. & Rutten, C. & Vredeveld, T., 2010. "Tight performance in Bayesian scheduling," Research Memorandum 052, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    17. N. Bora Keskin & John R. Birge, 2019. "Dynamic Selling Mechanisms for Product Differentiation and Learning," Operations Research, INFORMS, vol. 67(4), pages 1069-1089, July.
    18. Li Chen & Erica L. Plambeck, 2008. "Dynamic Inventory Management with Learning About the Demand Distribution and Substitution Probability," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 236-256, May.
    19. Mila Nambiar & David Simchi‐Levi & He Wang, 2021. "Dynamic Inventory Allocation with Demand Learning for Seasonal Goods," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 750-765, March.
    20. Gur, Yonatan & Macnamara, Gregory & Saban, Daniela, 2020. "On the Disclosure of Promotion Value in Platforms with Learning Sellers," Research Papers 3865, Stanford University, Graduate School of Business.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:61:y:2014:i:7:p:532-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.