IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v61y2014i7p515-531.html
   My bibliography  Save this article

Assessing the value of demand sharing in supply chains

Author

Listed:
  • Vladimir Kovtun
  • Avi Giloni
  • Clifford Hurvich

Abstract

We consider the problem of assessing the value of demand sharing in a multistage supply chain in which the retailer observes stationary autoregressive moving average demand with Gaussian white noise (shocks). Similar to previous research, we assume each supply chain player constructs its best linear forecast of the leadtime demand and uses it to determine the order quantity via a periodic review myopic order‐up‐to policy. We demonstrate how a typical supply chain player can determine the extent of its available information in the presence of demand sharing by studying the properties of the moving average polynomials of adjacent supply chain players. The retailer's demand is driven by the random shocks appearing in the autoregressive moving average representation for its demand. Under the assumptions we will make in this article, to the retailer, knowing the shock information is equivalent to knowing the demand process (assuming that the model parameters are also known). Thus (in the event of sharing) the retailer's demand sequence and shock sequence would contain the same information to the retailer's supplier. We will show that, once we consider the dynamics of demand propagation further up the chain, it may be that a player's demand and shock sequences will contain different levels of information for an upstream player. Hence, we study how a player can determine its available information under demand sharing, and use this information to forecast leadtime demand. We characterize the value of demand sharing for a typical supply chain player. Furthermore, we show conditions under which (i) it is equivalent to no sharing, (ii) it is equivalent to full information shock sharing, and (iii) it is intermediate in value to the two previously described arrangements. Although it follows from existing literature that demand sharing is equivalent to full information shock sharing between a retailer and supplier, we demonstrate and characterize when this result does not generalize to upstream supply chain players. We then show that demand propagates through a supply chain where any player may share nothing, its demand, or its full information shocks (FIS) with an adjacent upstream player as quasi‐ARMA in—quasi‐ARMA out. We also provide a convenient form for the propagation of demand in a supply chain that will lend itself to future research applications. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 515–531, 2014

Suggested Citation

  • Vladimir Kovtun & Avi Giloni & Clifford Hurvich, 2014. "Assessing the value of demand sharing in supply chains," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(7), pages 515-531, October.
  • Handle: RePEc:wly:navres:v:61:y:2014:i:7:p:515-531
    DOI: 10.1002/nav.21600
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21600
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    2. Vishal Gaur & Avi Giloni & Sridhar Seshadri, 2005. "Information Sharing in a Supply Chain Under ARMA Demand," Management Science, INFORMS, vol. 51(6), pages 961-969, June.
    3. Yossi Aviv, 2002. "Gaining Benefits from Joint Forecasting and Replenishment Processes: The Case of Auto-Correlated Demand," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 55-74, December.
    4. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    5. Avi Giloni & Clifford Hurvich & Sridhar Seshadri, 2014. "Forecasting and information sharing in supply chains under ARMA demand," IISE Transactions, Taylor & Francis Journals, vol. 46(1), pages 35-54.
    6. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
    7. Guillermo Gallego & Paul Zipkin, 1999. "Stock Positioning and Performance Estimation in Serial Production-Transportation Systems," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 77-88.
    8. Yossi Aviv, 2001. "The Effect of Collaborative Forecasting on Supply Chain Performance," Management Science, INFORMS, vol. 47(10), pages 1326-1343, October.
    9. Yossi Aviv, 2007. "On the Benefits of Collaborative Forecasting Partnerships Between Retailers and Manufacturers," Management Science, INFORMS, vol. 53(5), pages 777-794, May.
    10. Hosoda, Takamichi & Disney, Stephen M., 2006. "On variance amplification in a three-echelon supply chain with minimum mean square error forecasting," Omega, Elsevier, vol. 34(4), pages 344-358, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Li & Ting Chi & Tongtong Hao & Tao Yu, 2018. "Customer demand analysis of the electronic commerce supply chain using Big Data," Annals of Operations Research, Springer, vol. 268(1), pages 113-128, September.
    2. Lu, Jizhou & Feng, Gengzhong & Shum, Stephen & Lai, Kin Keung, 2021. "On the value of information sharing in the presence of information errors," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1139-1152.
    3. Kovtun, Vladimir & Giloni, Avi & Hurvich, Clifford, 2019. "The value of sharing disaggregated information in supply chains," European Journal of Operational Research, Elsevier, vol. 277(2), pages 469-478.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Chen & Wei Luo & Kevin Shang, 2017. "Measuring the Bullwhip Effect: Discrepancy and Alignment Between Information and Material Flows," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 36-51, February.
    2. Lu, Jizhou & Feng, Gengzhong & Shum, Stephen & Lai, Kin Keung, 2021. "On the value of information sharing in the presence of information errors," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1139-1152.
    3. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    4. Kovtun, Vladimir & Giloni, Avi & Hurvich, Clifford, 2019. "The value of sharing disaggregated information in supply chains," European Journal of Operational Research, Elsevier, vol. 277(2), pages 469-478.
    5. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    6. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    7. Graça, Paula & Camarinha-Matos, Luís M., 2017. "Performance indicators for collaborative business ecosystems — Literature review and trends," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 237-255.
    8. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    9. Tetsuo Iida & Paul Zipkin, 2010. "Competition and Cooperation in a Two-Stage Supply Chain with Demand Forecasts," Operations Research, INFORMS, vol. 58(5), pages 1350-1363, October.
    10. Sechan Oh & Özalp Özer, 2013. "Mechanism Design for Capacity Planning Under Dynamic Evolutions of Asymmetric Demand Forecasts," Management Science, INFORMS, vol. 59(4), pages 987-1007, April.
    11. Bharadwaj Kadiyala & Özalp Özer & Alain Bensoussan, 2020. "A Mechanism Design Approach to Vendor Managed Inventory," Management Science, INFORMS, vol. 66(6), pages 2628-2652, June.
    12. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    13. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    14. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    15. Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
    16. Tliche, Y. & Taghipour, A. & Canel-Depitre, B., 2019. "Downstream Demand Inference in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 274(1), pages 65-77.
    17. Ruomeng Cui & Gad Allon & Achal Bassamboo & Jan A. Van Mieghem, 2015. "Information Sharing in Supply Chains: An Empirical and Theoretical Valuation," Management Science, INFORMS, vol. 61(11), pages 2803-2824, November.
    18. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    19. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    20. Xu, Xiaoyan & Choi, Tsan-Ming & Chung, Sai-Ho & Guo, Shu, 2023. "Collaborative-commerce in supply chains: A review and classification of analytical models," International Journal of Production Economics, Elsevier, vol. 263(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:61:y:2014:i:7:p:515-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.