IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v60y2013i8p661-677.html
   My bibliography  Save this article

Dynamic service rate control for a single‐server queue with Markov‐modulated arrivals

Author

Listed:
  • Ravi Kumar
  • Mark E. Lewis
  • Huseyin Topaloglu

Abstract

We consider the problem of service rate control of a single‐server queueing system with a finite‐state Markov‐modulated Poisson arrival process. We show that the optimal service rate is nondecreasing in the number of customers in the system; higher congestion levels warrant higher service rates. On the contrary, however, we show that the optimal service rate is not necessarily monotone in the current arrival rate. If the modulating process satisfies a stochastic monotonicity property, the monotonicity is recovered. We examine several heuristics and show where heuristics are reasonable substitutes for the optimal control. None of the heuristics perform well in all the regimes and the fluctuation rate of the modulating process plays an important role in deciding the right heuristic. Second, we discuss when the Markov‐modulated Poisson process with service rate control can act as a heuristic itself to approximate the control of a system with a periodic nonhomogeneous Poisson arrival process. Not only is the current model of interest in the control of Internet or mobile networks with bursty traffic, but it is also useful in providing a tractable alternative for the control of service centers with nonstationary arrival rates. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 661–677, 2013

Suggested Citation

  • Ravi Kumar & Mark E. Lewis & Huseyin Topaloglu, 2013. "Dynamic service rate control for a single‐server queue with Markov‐modulated arrivals," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 661-677, December.
  • Handle: RePEc:wly:navres:v:60:y:2013:i:8:p:661-677
    DOI: 10.1002/nav.21560
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21560
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linda V. Green & Peter J. Kolesar, 1995. "On the Accuracy of the Simple Peak Hour Approximation for Markovian Queues," Management Science, INFORMS, vol. 41(8), pages 1353-1370, August.
    2. Keilson, Julian & Kester, Adri, 1977. "Monotone matrices and monotone Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 5(3), pages 231-241, July.
    3. Eugene A. Feinberg & Mark E. Lewis, 2007. "Optimality Inequalities for Average Cost Markov Decision Processes and the Stochastic Cash Balance Problem," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 769-783, November.
    4. David L. Kaufman & Mark E. Lewis, 2007. "Machine maintenance with workload considerations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 750-766, October.
    5. Barιş Ata, 2005. "Dynamic Power Control in a Wireless Static Channel Subject to a Quality-of-Service Constraint," Operations Research, INFORMS, vol. 53(5), pages 842-851, October.
    6. Jennifer M. George & J. Michael Harrison, 2001. "Dynamic Control of a Queue with Adjustable Service Rate," Operations Research, INFORMS, vol. 49(5), pages 720-731, October.
    7. Thomas B. Crabill, 1974. "Optimal Control of a Maintenance System with Variable Service Rates," Operations Research, INFORMS, vol. 22(4), pages 736-745, August.
    8. Shaler Stidham & Richard R. Weber, 1989. "Monotonic and Insensitive Optimal Policies for Control of Queues with Undiscounted Costs," Operations Research, INFORMS, vol. 37(4), pages 611-625, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Legros, Benjamin, 2022. "The principal-agent problem for service rate event-dependency," European Journal of Operational Research, Elsevier, vol. 297(3), pages 949-963.
    2. Huanan Zhang & Cong Shi & Chao Qin & Cheng Hua, 2016. "Stochastic regret minimization for revenue management problems with nonstationary demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 433-448, September.
    3. Guodong Pang & Andrey Sarantsev & Yana Belopolskaya & Yuri Suhov, 2020. "Stationary distributions and convergence for M/M/1 queues in interactive random environment," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 357-392, April.
    4. Benjamin Legros, 2022. "The principal-agent problem for service rate event-dependency," Post-Print hal-03605421, HAL.
    5. Shing Chih Tsai & Jun Luo & Chi Ching Sung, 2017. "Combined variance reduction techniques in fully sequential selection procedures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(6), pages 502-527, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barιş Ata & Deishin Lee & Erkut Sönmez, 2019. "Dynamic Volunteer Staffing in Multicrop Gleaning Operations," Operations Research, INFORMS, vol. 67(2), pages 295-314, March.
    2. Baris Ata & Deishin Lee & Mustafa Hayri Tongarlak, 2024. "A diffusion model of dynamic participant inflow management," Queueing Systems: Theory and Applications, Springer, vol. 108(3), pages 383-414, December.
    3. Barιş Ata, 2005. "Dynamic Power Control in a Wireless Static Channel Subject to a Quality-of-Service Constraint," Operations Research, INFORMS, vol. 53(5), pages 842-851, October.
    4. Ying Xu & Alan Scheller-Wolf & Katia Sycara, 2015. "The Benefit of Introducing Variability in Single-Server Queues with Application to Quality-Based Service Domains," Operations Research, INFORMS, vol. 63(1), pages 233-246, February.
    5. Shone, Rob & Glazebrook, Kevin & Zografos, Konstantinos G., 2019. "Resource allocation in congested queueing systems with time-varying demand: An application to airport operations," European Journal of Operational Research, Elsevier, vol. 276(2), pages 566-581.
    6. Wallace J. Hopp & Seyed M. R. Iravani & Gigi Y. Yuen, 2007. "Operations Systems with Discretionary Task Completion," Management Science, INFORMS, vol. 53(1), pages 61-77, January.
    7. Diwas S. Kc & Christian Terwiesch, 2009. "Impact of Workload on Service Time and Patient Safety: An Econometric Analysis of Hospital Operations," Management Science, INFORMS, vol. 55(9), pages 1486-1498, September.
    8. Jennifer M. George & J. Michael Harrison, 2001. "Dynamic Control of a Queue with Adjustable Service Rate," Operations Research, INFORMS, vol. 49(5), pages 720-731, October.
    9. Diwas Singh KC & Christian Terwiesch, 2012. "An Econometric Analysis of Patient Flows in the Cardiac Intensive Care Unit," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 50-65, January.
    10. Sami Najafi-Asadolahi & Kristin Fridgeirsdottir, 2014. "Cost-per-Click Pricing for Display Advertising," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 482-497, October.
    11. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    12. Bradley, James R., 2005. "Optimal control of a dual service rate M/M/1 production-inventory model," European Journal of Operational Research, Elsevier, vol. 161(3), pages 812-837, March.
    13. Li Xia & Zhe George Zhang & Quan‐Lin Li, 2022. "A c/μ‐Rule for Job Assignment in Heterogeneous Group‐Server Queues," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1191-1215, March.
    14. Jingqi Wang & Yong-Pin Zhou, 2018. "Impact of Queue Configuration on Service Time: Evidence from a Supermarket," Management Science, INFORMS, vol. 64(7), pages 3055-3075, July.
    15. Huanan Zhang & Cong Shi & Chao Qin & Cheng Hua, 2016. "Stochastic regret minimization for revenue management problems with nonstationary demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 433-448, September.
    16. Jillian A. Berry Jaeker & Anita L. Tucker, 2017. "Past the Point of Speeding Up: The Negative Effects of Workload Saturation on Efficiency and Patient Severity," Management Science, INFORMS, vol. 63(4), pages 1042-1062, April.
    17. Barış Ata, 2006. "Dynamic Control of a Multiclass Queue with Thin Arrival Streams," Operations Research, INFORMS, vol. 54(5), pages 876-892, October.
    18. Karantounias, Anastasios G., 2023. "Doubts about the model and optimal policy," Journal of Economic Theory, Elsevier, vol. 210(C).
    19. Piotr Więcek & Eitan Altman & Arnob Ghosh, 2016. "Mean-Field Game Approach to Admission Control of an M/M/ $$\infty $$ ∞ Queue with Shared Service Cost," Dynamic Games and Applications, Springer, vol. 6(4), pages 538-566, December.
    20. Roland Benabou & Efe A. Ok, 2001. "Social Mobility and the Demand for Redistribution: The Poum Hypothesis," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 447-487.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:60:y:2013:i:8:p:661-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.