IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v57y2010i7p667-672.html
   My bibliography  Save this article

Analytic solution for the nucleolus of a three‐player cooperative game

Author

Listed:
  • Mingming Leng
  • Mahmut Parlar

Abstract

The nucleolus solution for cooperative games in characteristic function form is usually computed numerically by solving a sequence of linear programing (LP) problems, or by solving a single, but very large‐scale, LP problem. This article proposes an algebraic method to compute the nucleolus solution analytically (i.e., in closed‐form) for a three‐player cooperative game in characteristic function form. We first consider cooperative games with empty core and derive a formula to compute the nucleolus solution. Next, we examine cooperative games with nonempty core and calculate the nucleolus solution analytically for five possible cases arising from the relationship among the value functions of different coalitions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010

Suggested Citation

  • Mingming Leng & Mahmut Parlar, 2010. "Analytic solution for the nucleolus of a three‐player cooperative game," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(7), pages 667-672, October.
  • Handle: RePEc:wly:navres:v:57:y:2010:i:7:p:667-672
    DOI: 10.1002/nav.20429
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20429
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. H. Gow & L. C. Thomas, 1998. "Interchange fees for bank ATM networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(4), pages 407-417, June.
    2. Solymosi, Tamas & Raghavan, Tirukkannamangai E S, 1994. "An Algorithm for Finding the Nucleolus of Asignment Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(2), pages 119-143.
    3. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    4. Fromen, Bastian, 1997. "Reducing the number of linear programs needed for solving the nucleolus problem of n-person game theory," European Journal of Operational Research, Elsevier, vol. 98(3), pages 626-636, May.
    5. Alois Behringer, Fred, 1981. "A simplex based algorithm for the lexicographically extended linear maxmin problem," European Journal of Operational Research, Elsevier, vol. 7(3), pages 274-283, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian Chi-ang Lin & Siqi Zheng & Marco Rogna, 2016. "Cooperative Game Theory Applied To Ieas: A Comparison Of Solution Concepts," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 649-678, July.
    2. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Tri-Dung & Thomas, Lyn, 2016. "Finding the nucleoli of large cooperative games," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1078-1092.
    2. Tamas Solymosi & Balazs Sziklai, 2015. "Universal Characterization Sets for the Nucleolus in Balanced Games," CERS-IE WORKING PAPERS 1512, Institute of Economics, Centre for Economic and Regional Studies.
    3. Vijay V. Vazirani, 2022. "New Characterizations of Core Imputations of Matching and $b$-Matching Games," Papers 2202.00619, arXiv.org, revised Dec 2022.
    4. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions (extended version)," CERS-IE WORKING PAPERS 1914, Institute of Economics, Centre for Economic and Regional Studies.
    5. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1087-1109, December.
    6. Fromen, Bastian, 1997. "Reducing the number of linear programs needed for solving the nucleolus problem of n-person game theory," European Journal of Operational Research, Elsevier, vol. 98(3), pages 626-636, May.
    7. Francesc Llerena (Universitat Rovira i Virgili - CREIP) & Marina Nunez (Universitat de Barcelona) & Carles Rafels (Universitat de Barcelona), 2012. "An axiomatization of the nucleolus of the assignment game," Working Papers in Economics 286, Universitat de Barcelona. Espai de Recerca en Economia.
    8. Péter Biró & Walter Kern & Daniël Paulusma, 2012. "Computing solutions for matching games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 75-90, February.
    9. Solymosi, Tamas & Raghavan, T. E. S. & Tijs, Stef, 2005. "Computing the nucleolus of cyclic permutation games," European Journal of Operational Research, Elsevier, vol. 162(1), pages 270-280, April.
    10. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    11. Reijnierse, Hans & Potters, Jos, 1998. "The -Nucleolus of TU-Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 77-96, July.
    12. repec:has:discpr:1321 is not listed on IDEAS
    13. Walter Kern & Daniël Paulusma, 2003. "Matching Games: The Least Core and the Nucleolus," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 294-308, May.
    14. Francesc Llerena & Marina Nunez, 2011. "A geometric characterization of the nucleolus of the assignment game," Economics Bulletin, AccessEcon, vol. 31(4), pages 3275-3285.
    15. Marina Núñez & Carles Rafels, 2006. "A Canonical Representation for the Assignment Game: the Kernel and the Nucleolus," Working Papers 279, Barcelona School of Economics.
    16. Francesc Llerena & Marina Núñez & Carles Rafels, 2015. "An axiomatization of the nucleolus of assignment markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 1-15, February.
    17. Qizhi Fang & Bo Li & Xiaohan Shan & Xiaoming Sun, 2018. "Path cooperative games," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 211-229, July.
    18. Zhang Jiangao & Shitao Yang, 2016. "On the Lexicographic Centre of Multiple Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 600-614, February.
    19. Hangfei Guo & Mingming Leng & Yulan Wang, 2012. "Interchange fee rate, merchant discount rate, and retail price in a credit card network: A game‐theoretic analysis," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 525-551, October.
    20. Karaca, Orcun & Delikaraoglou, Stefanos & Hug, Gabriela & Kamgarpour, Maryam, 2022. "Enabling inter-area reserve exchange through stable benefit allocation mechanisms," Omega, Elsevier, vol. 113(C).
    21. Keyzer, Michiel & van Wesenbeeck, Cornelia, 2011. "Optimal coalition formation and surplus distribution: Two sides of one coin," European Journal of Operational Research, Elsevier, vol. 215(3), pages 604-615, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:57:y:2010:i:7:p:667-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.