IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v54y2007i7p796-810.html
   My bibliography  Save this article

Capacity allocation to sales agents in a decentralized logistics network

Author

Listed:
  • Ozgun Caliskan Demirag
  • Julie L. Swann

Abstract

Many logistics systems operate in a decentralized way, while most optimization models assume a centralized planner. One example of a decentralized system is in some sea cargo companies: sales agents, who share ship capacity on a network, independently accept cargo from their location and contribute to the revenue of the system. The central headquarters does not directly control the agents' decisions but can influence them through system design and incentives. In this paper, we model the firm's problem to determine the best capacity allocation to the agents such that system revenue is maximized. In the special case of a single‐route, we formulate the problem as a mixed integer program incorporating the optimal agent behavior. For the NP‐hard multiple‐route case, we propose several heuristics for the problem. Computational experiments show that the decentralized system generally performs worse when network capacity is tight and that the heuristics perform reasonably well. We show that the decentralized system may perform arbitrarily worse than the centralized system when the number of locations goes to infinity, although the choice of sales incentive impacts the performance. We develop an upper bound for the decentralized system, where the bound gives insight on the performance of the heuristics in large systems. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007

Suggested Citation

  • Ozgun Caliskan Demirag & Julie L. Swann, 2007. "Capacity allocation to sales agents in a decentralized logistics network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(7), pages 796-810, October.
  • Handle: RePEc:wly:navres:v:54:y:2007:i:7:p:796-810
    DOI: 10.1002/nav.20254
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20254
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    2. Ananth V. Iyer & Leroy B. Schwarz & Stefanos A. Zenios, 2005. "A Principal-Agent Model for Product Specification and Production," Management Science, INFORMS, vol. 51(1), pages 106-119, January.
    3. Kasilingam, R. G., 1997. "Air cargo revenue management: Characteristics and complexities," European Journal of Operational Research, Elsevier, vol. 96(1), pages 36-44, January.
    4. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    5. Jean Tirole, 1988. "The Theory of Industrial Organization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262200716, April.
    6. Dimitris Bertsimas & Ioana Popescu, 2003. "Revenue Management in a Dynamic Network Environment," Transportation Science, INFORMS, vol. 37(3), pages 257-277, August.
    7. Fred Glover & Randy Glover & Joe Lorenzo & Claude McMillan, 1982. "The Passenger-Mix Problem in the Scheduled Airlines," Interfaces, INFORMS, vol. 12(3), pages 73-80, June.
    8. Charles J. Corbett & Xavier de Groote, 2000. "A Supplier's Optimal Quantity Discount Policy Under Asymmetric Information," Management Science, INFORMS, vol. 46(3), pages 444-450, March.
    9. Gazis, Denos C., 1987. "Resource allocation in a large decentralized enterprise," European Journal of Operational Research, Elsevier, vol. 30(3), pages 339-343, June.
    10. Dror, Moshe & Trudeau, Pierre & Ladany, Shaul P., 1988. "Network models for seat allocation on flights," Transportation Research Part B: Methodological, Elsevier, vol. 22(4), pages 239-250, August.
    11. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    12. Ramesh Johari & John N. Tsitsiklis, 2004. "Efficiency Loss in a Network Resource Allocation Game," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 407-435, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Long Gao & Jim (Junmin) Shi & Michael F. Gorman & Ting Luo, 2020. "Business Analytics for Intermodal Capacity Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 310-329, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Buhl & Robert Klein & Johannes Kolb & Andrea Landherr, 2011. "CR 2 M—an approach for capacity control considering long-term effects on the value of a customer for the company," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(2), pages 187-204, December.
    2. Alec Morton, 2006. "Structural properties of network revenue management models: An economic perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 748-760, December.
    3. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    4. Klein, Robert & Kolb, Johannes, 2015. "Maximizing customer equity subject to capacity constraints," Omega, Elsevier, vol. 55(C), pages 111-125.
    5. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    6. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    7. Guillermo Gallego & Michael Z. F. Li & Yan Liu, 2020. "Dynamic Nonlinear Pricing of Inventories over Finite Sales Horizons," Operations Research, INFORMS, vol. 68(3), pages 655-670, May.
    8. Elodie Adida & Georgia Perakis, 2014. "The effect of supplier capacity on the supply chain profit," Annals of Operations Research, Springer, vol. 223(1), pages 1-52, December.
    9. Wang, Xiubin & Wang, Fenghuan, 2007. "Dynamic network yield management," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 410-425, May.
    10. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    11. Chen, Bo & Zhang, Xiandong, 2019. "Scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 274(3), pages 900-908.
    12. Kalyan Talluri & Garrett van Ryzin, 2000. "Revenue management under general discrete choice model of consumer behavior," Economics Working Papers 533, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2001.
    13. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    14. Wang, Jian-Cai & Lau, Hon-Shiang & Lau, Amy Hing Ling, 2009. "When should a manufacturer share truthful manufacturing cost information with a dominant retailer?," European Journal of Operational Research, Elsevier, vol. 197(1), pages 266-286, August.
    15. Alderighi, Marco & Gaggero, Alberto A. & Piga, Claudio A., 2022. "Hidden prices with fixed inventory: Evidence from the airline industry," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 42-61.
    16. Biswas, Indranil & Avittathur, Balram & Chatterjee, Ashis K, 2016. "Impact of structure, market share and information asymmetry on supply contracts for a single supplier multiple buyer network," European Journal of Operational Research, Elsevier, vol. 253(3), pages 593-601.
    17. Ananth Iyer & Omkar Palsule-Desai, 2019. "Contract Design for the Stockist in Indian Distribution Networks," Manufacturing & Service Operations Management, INFORMS, vol. 21(2), pages 398-416, April.
    18. Wuyang Yuan & Lei Nie, 2020. "Optimization of seat allocation with fixed prices: An application of railway revenue management in China," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-25, April.
    19. Huibing Yin & Prashant Mehta & Sean Meyn & Uday Shanbhag, 2014. "On the Efficiency of Equilibria in Mean-Field Oscillator Games," Dynamic Games and Applications, Springer, vol. 4(2), pages 177-207, June.
    20. Luo, Sirong & Çakany?ld?r?m, Metin & Kasilingam, Raja G., 2009. "Two-dimensional cargo overbooking models," European Journal of Operational Research, Elsevier, vol. 197(3), pages 862-883, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:54:y:2007:i:7:p:796-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.