IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v53y2006i3p217-225.html
   My bibliography  Save this article

Modeling the operation of multireservoir systems using decomposition and stochastic dynamic programming

Author

Listed:
  • T.W. Archibald
  • K.I.M. McKinnon
  • L.C. Thomas

Abstract

Stochastic dynamic programming models are attractive for multireservoir control problems because they allow non‐linear features to be incorporated and changes in hydrological conditions to be modeled as Markov processes. However, with the exception of the simplest cases, these models are computationally intractable because of the high dimension of the state and action spaces involved. This paper proposes a new method of determining an operating policy for a multireservoir control problem that uses stochastic dynamic programming, but is practical for systems with many reservoirs. Decomposition is first used to reduce the problem to a number of independent subproblems. Each subproblem is formulated as a low‐dimensional stochastic dynamic program and solved to determine the operating policy for one of the reservoirs in the system. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006

Suggested Citation

  • T.W. Archibald & K.I.M. McKinnon & L.C. Thomas, 2006. "Modeling the operation of multireservoir systems using decomposition and stochastic dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(3), pages 217-225, April.
  • Handle: RePEc:wly:navres:v:53:y:2006:i:3:p:217-225
    DOI: 10.1002/nav.20134
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20134
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reznicek, K. & Cheng, T. C. E., 1991. "Stochastic modelling of reservoir operations," European Journal of Operational Research, Elsevier, vol. 50(3), pages 235-248, February.
    2. Sharon A. Johnson & Jery R. Stedinger & Christine A. Shoemaker & Ying Li & José Alberto Tejada-Guibert, 1993. "Numerical Solution of Continuous-State Dynamic Programs Using Linear and Spline Interpolation," Operations Research, INFORMS, vol. 41(3), pages 484-500, June.
    3. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    4. T W Archibald & C S Buchanan & K I M McKinnon & L C Thomas, 1999. "Nested Benders decomposition and dynamic programming for reservoir optimisation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 468-479, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Falah Allawi & Othman Jaafar & Mohammad Ehteram & Firdaus Mohamad Hamzah & Ahmed El-Shafie, 2018. "Synchronizing Artificial Intelligence Models for Operating the Dam and Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3373-3389, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luckny Zephyr & Bernard F. Lamond & Pascal Lang, 2024. "Hybrid simplicial-randomized approximate stochastic dynamic programming for multireservoir optimization," Computational Management Science, Springer, vol. 21(1), pages 1-44, June.
    2. Cervellera, Cristiano & Chen, Victoria C.P. & Wen, Aihong, 2006. "Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1139-1151, June.
    3. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2013. "Dynamic Programming and Value-Function Approximation in Sequential Decision Problems: Error Analysis and Numerical Results," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 380-416, February.
    4. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    5. Chen, Ruoran & Deng, Tianhu & Huang, Simin & Qin, Ruwen, 2015. "Optimal crude oil procurement under fluctuating price in an oil refinery," European Journal of Operational Research, Elsevier, vol. 245(2), pages 438-445.
    6. Zehua Yang & Victoria C. P. Chen & Michael E. Chang & Melanie L. Sattler & Aihong Wen, 2009. "A Decision-Making Framework for Ozone Pollution Control," Operations Research, INFORMS, vol. 57(2), pages 484-498, April.
    7. Diego Klabjan & Daniel Adelman, 2007. "An Infinite-Dimensional Linear Programming Algorithm for Deterministic Semi-Markov Decision Processes on Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 528-550, August.
    8. Chen, Victoria C. P., 1999. "Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 317-341, May.
    9. M. Baglietto & C. Cervellera & M. Sanguineti & R. Zoppoli, 2010. "Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling," Computational Optimization and Applications, Springer, vol. 47(2), pages 349-376, October.
    10. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2014. "Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty," Computational Optimization and Applications, Springer, vol. 58(1), pages 31-85, May.
    11. Cervellera, Cristiano, 2023. "Optimized ensemble value function approximation for dynamic programming," European Journal of Operational Research, Elsevier, vol. 309(2), pages 719-730.
    12. Cervellera, C. & Macciò, D., 2011. "A comparison of global and semi-local approximation in T-stage stochastic optimization," European Journal of Operational Research, Elsevier, vol. 208(2), pages 109-118, January.
    13. Tetsuo Iida & Paul H. Zipkin, 2006. "Approximate Solutions of a Dynamic Forecast-Inventory Model," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 407-425, October.
    14. Ying Chen & Krystel K. Castillo-Villar & Bing Dong, 2021. "Stochastic control of a micro-grid using battery energy storage in solar-powered buildings," Annals of Operations Research, Springer, vol. 303(1), pages 197-216, August.
    15. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    16. Khan, Aubhik & Thomas, Julia K., 2003. "Nonconvex factor adjustments in equilibrium business cycle models: do nonlinearities matter?," Journal of Monetary Economics, Elsevier, vol. 50(2), pages 331-360, March.
    17. Drouin, Nicol & Gautier, Antoine & Lamond, Bernard F. & Lang, Pascal, 1996. "Piecewise affine approximations for the control of a one-reservoir hydroelectric system," European Journal of Operational Research, Elsevier, vol. 89(1), pages 53-69, February.
    18. Gianluca Benigno & Huigang Chen & Christopher Otrok & Alessandro Rebucci & Eric R. Young, 2011. "Revisiting Overborrowing and its Policy Implications," Central Banking, Analysis, and Economic Policies Book Series, in: Luis Felipe Céspedes & Roberto Chang & Diego Saravia (ed.),Monetary Policy under Financial Turbulence, edition 1, volume 16, chapter 6, pages 145-184, Central Bank of Chile.
    19. King, Robert P. & Lohano, Heman D., 2006. "Accuracy of Numerical Solution to Dynamic Programming Models," Staff Papers 14230, University of Minnesota, Department of Applied Economics.
    20. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:53:y:2006:i:3:p:217-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.