IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v52y2005i4p302-311.html
   My bibliography  Save this article

Manpower allocation with time windows and job‐teaming constraints

Author

Listed:
  • Yanzhi Li
  • Andrew Lim
  • Brian Rodrigues

Abstract

In this work, we study manpower allocation with time windows and job‐teaming constraints. A set of jobs at dispersed locations requires teams of different types of workers where each job must be carried out in a preestablished time window and requires a specific length of time for completion. A job is satisfied if the required composite team can be brought together at the job's location for the required duration within the job's time window. The objective is to minimize a weighted sum of the total number of workers and the total traveling time. We show that construction heuristics used with simulated annealing is a good approach to solving this NP‐hard problem. In experiments, this approach is compared with solutions found using CPLEX and with lower bounds obtained from a network flow model. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.

Suggested Citation

  • Yanzhi Li & Andrew Lim & Brian Rodrigues, 2005. "Manpower allocation with time windows and job‐teaming constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 302-311, June.
  • Handle: RePEc:wly:navres:v:52:y:2005:i:4:p:302-311
    DOI: 10.1002/nav.20075
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20075
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen-Chyuan Chiang & Robert A. Russell, 1997. "A Reactive Tabu Search Metaheuristic for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 9(4), pages 417-430, November.
    2. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    3. Martin Pincus, 1970. "Letter to the Editor—A Monte Carlo Method for the Approximate Solution of Certain Types of Constrained Optimization Problems," Operations Research, INFORMS, vol. 18(6), pages 1225-1228, December.
    4. Li, Haibing & Lim, Andrew, 2003. "Local search with annealing-like restarts to solve the VRPTW," European Journal of Operational Research, Elsevier, vol. 150(1), pages 115-127, October.
    5. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    6. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    2. Guastaroba, G. & Côté, J.-F. & Coelho, L.C., 2021. "The Multi-Period Workforce Scheduling and Routing Problem," Omega, Elsevier, vol. 102(C).
    3. Andreas Hagn & Rainer Kolisch & Giacomo Dall'Olio & Stefan Weltge, 2024. "A Branch-Price-Cut-And-Switch Approach for Optimizing Team Formation and Routing for Airport Baggage Handling Tasks with Stochastic Travel Times," Papers 2405.20912, arXiv.org.
    4. Zhixing Luo & Hu Qin & Wenbin Zhu & Andrew Lim, 2016. "Branch‐and‐price‐and‐cut for the manpower routing problem with synchronization constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 138-171, March.
    5. Hossein Hashemi Doulabi & Gilles Pesant & Louis-Martin Rousseau, 2020. "Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare," Transportation Science, INFORMS, vol. 54(4), pages 1053-1072, July.
    6. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    7. Wang, Naiyu & Meng, Qiang & Zhang, Canrong, 2023. "A branch-price-and-cut algorithm for the local container drayage problem with controllable vehicle interference," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    8. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    2. A Lim & B Rodrigues & L Song, 2004. "Manpower allocation with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1178-1186, November.
    3. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    4. R A Russell & T L Urban, 2008. "Vehicle routing with soft time windows and Erlang travel times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1220-1228, September.
    5. Sana Jawarneh & Salwani Abdullah, 2015. "Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    6. Braysy, Olli & Hasle, Geir & Dullaert, Wout, 2004. "A multi-start local search algorithm for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 159(3), pages 586-605, December.
    7. Olli Bräysy, 2003. "A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 347-368, November.
    8. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    9. K H Kim & M J Lee, 2007. "Scheduling trucks in local depots for door-to-door delivery services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1195-1202, September.
    10. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    11. Russell, Robert A. & Chiang, Wen-Chyuan, 2006. "Scatter search for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 169(2), pages 606-622, March.
    12. A Ostertag & K F Doerner & R F Hartl & E D Taillard & P Waelti, 2009. "POPMUSIC for a real-world large-scale vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 934-943, July.
    13. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    14. Baozhen Yao & Qianqian Yan & Mengjie Zhang & Yunong Yang, 2017. "Improved artificial bee colony algorithm for vehicle routing problem with time windows," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-18, September.
    15. Taillard, Eric D. & Gambardella, Luca M. & Gendreau, Michel & Potvin, Jean-Yves, 2001. "Adaptive memory programming: A unified view of metaheuristics," European Journal of Operational Research, Elsevier, vol. 135(1), pages 1-16, November.
    16. Ostermeier, Manuel, 2024. "The supply of convenience stores: Challenges of short-distance routing within the constraints of working time regulations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 997-1012.
    17. José Brandão, 2017. "Iterated Local Search Algorithm for the Vehicle Routing Problem with Backhauls and Soft Time Windows," Working Papers REM 2017/10, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    18. Li, Haibing & Lim, Andrew, 2003. "Local search with annealing-like restarts to solve the VRPTW," European Journal of Operational Research, Elsevier, vol. 150(1), pages 115-127, October.
    19. Cruijssen, F. & Braysy, O. & Dullaert, W. & Fleuren, H.A. & Salomon, M., 2006. "Joint Route Planning under Varying Market Conditions," Other publications TiSEM 3de2ec0a-7424-43ec-a419-5, Tilburg University, School of Economics and Management.
    20. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2018. "An optimization approach for designing routes in metrological control services: a case study," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 924-952, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:52:y:2005:i:4:p:302-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.