IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v45y1998i7p669-685.html
   My bibliography  Save this article

Analysis of production lines with Coxian service times and no intermediate buffers

Author

Listed:
  • H. T. Papadopoulos

Abstract

This paper uses the holding time model (HTM) method to derive an approximate analytic formula for the calculation of the mean throughput of a K‐station production line with no buffers between any two successive stations. Service times follow the two‐stage Coxian (C2) distribution at all stations. The paper provides a formula that relates the third moment of the service completion (or virtual service) time with the respective parameters of the service time, the repair time and the time to breakdown (the latter is assumed to follow the exponential distribution). In this way, it concludes that under certain conditions the two‐stage Coxian distribution can be used to approximate any general distribution matching the first three moments of the service completion time distribution. The mean holding times (consisting of the service and blocking periods) of all stations of the line are obtained in an analytical form. Numerical results are provided for the mean throughput of lines with up to 20 stations. These results are shown to have a good accuracy compared against results obtained from the Markovian state method (for short lines) and results from simulation (for longer lines). © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 669–685, 1998

Suggested Citation

  • H. T. Papadopoulos, 1998. "Analysis of production lines with Coxian service times and no intermediate buffers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 669-685, October.
  • Handle: RePEc:wly:navres:v:45:y:1998:i:7:p:669-685
    DOI: 10.1002/(SICI)1520-6750(199810)45:73.0.CO;2-9
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199810)45:73.0.CO;2-9
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199810)45:73.0.CO;2-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muth, Eginhard J., 1984. "Stochastic processes and their network representations associated with a production line queuing model," European Journal of Operational Research, Elsevier, vol. 15(1), pages 63-83, January.
    2. Heavey, C. & Papadopoulos, H. T. & Browne, J., 1993. "The throughput rate of multistation unreliable production lines," European Journal of Operational Research, Elsevier, vol. 68(1), pages 69-89, July.
    3. Hrissoleon T. Papadopoulos, 1995. "The Throughput of Multistation Production Lines with No Intermediate Buffers," Operations Research, INFORMS, vol. 43(4), pages 712-715, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    2. Papadopoulos, Hrissoleon T., 1996. "An analytic formula for the mean throughput of K-station production lines with no intermediate buffers," European Journal of Operational Research, Elsevier, vol. 91(3), pages 481-494, June.
    3. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    4. Papadopoulos, H. T., 1998. "An approximate method for calculating the mean sojourn time of K-station production lines with no intermediate buffers," International Journal of Production Economics, Elsevier, vol. 54(3), pages 297-305, May.
    5. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    6. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Chen, Chin-Tai & Yuan, John, 2004. "Transient throughput analysis for a series type system of machines in terms of alternating renewal processes," European Journal of Operational Research, Elsevier, vol. 155(1), pages 178-197, May.
    8. Tan, Baris, 1997. "Variance of the throughput of an N-station production line with no intermediate buffers and time dependent failures," European Journal of Operational Research, Elsevier, vol. 101(3), pages 560-576, September.
    9. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    10. Mehmet Savsar, 2016. "Reliability and availability analysis of a manufacturing line system," Journal of Applied and Physical Sciences, Prof. Vakhrushev Alexander, vol. 2(3), pages 96-106.
    11. Sabry Shaaban & Tom Mcnamara & Sarah Hudson, 2015. "The impact of failure, repair and joint imbalance of processing time means & buffer sizes on the performance of unpaced production lines," Post-Print hal-01205567, HAL.
    12. Alexandros, Diamantidis C. & Chrissoleon, Papadopoulos T., 2009. "Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines," European Journal of Operational Research, Elsevier, vol. 197(2), pages 572-580, September.
    13. G. Alon & D. Kroese & T. Raviv & R. Rubinstein, 2005. "Application of the Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based Environment," Annals of Operations Research, Springer, vol. 134(1), pages 137-151, February.
    14. Eva Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Decision support system for mass dispensing of medications for infectious disease outbreaks and bioterrorist attacks," Annals of Operations Research, Springer, vol. 148(1), pages 25-53, November.
    15. Yarmand, Mohammad H. & Down, Douglas G., 2013. "Server allocation for zero buffer tandem queues," European Journal of Operational Research, Elsevier, vol. 230(3), pages 596-603.
    16. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi & Stanley Gershwin & Irvin Schick, 2013. "Discrete time model for two-machine one-buffer transfer lines with restart policy," Annals of Operations Research, Springer, vol. 209(1), pages 41-65, October.
    17. Baker, Kenneth R. & Powell, Stephen G., 1995. "A predictive model for the throughput of simple assembly systems," European Journal of Operational Research, Elsevier, vol. 81(2), pages 336-345, March.
    18. Lee, S. D. & Rung, J. M., 2000. "Production lot sizing in failure prone two-stage serial systems," European Journal of Operational Research, Elsevier, vol. 123(1), pages 42-60, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:45:y:1998:i:7:p:669-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.