IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v38y1991i3p447-461.html
   My bibliography  Save this article

Optimal clustering: A model and method

Author

Listed:
  • Gary Klein
  • Jay E. Aronson

Abstract

Classifying items into distinct groupings is fundamental in scientific inquiry. The objective of cluster analysis is to assign n objects to up to K mutually exclusive groups while minimizing some measure of dissimilarity among the items. Few mathematical programming approaches have been applied to these problems. Most clustering methods to date only consider lowering the amount of interaction between each observation and the group mean or median. Clustering used in information systems development to determine groupings of modules requires a model that will account for the total group interaction. We formulate a mixed‐integer programming model for optimal clustering based upon scaled distance measures to account for this total group interaction. We discuss an efficient, implicit enumeration algorithm along with some implementation issues, a method for computing tight bounds for each node in the solution tree, and a small example. A computational example problem, taken from the computer‐assisted process organization (CAPO) literature, is presented. Detailed computational results indicate that the method is effective for solving this type of cluster analysis problem.

Suggested Citation

  • Gary Klein & Jay E. Aronson, 1991. "Optimal clustering: A model and method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 447-461, June.
  • Handle: RePEc:wly:navres:v:38:y:1991:i:3:p:447-461
    DOI: 10.1002/1520-6750(199106)38:33.0.CO;2-0
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199106)38:33.0.CO;2-0
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199106)38:33.0.CO;2-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John M. Mulvey & Harlan P. Crowder, 1979. "Cluster Analysis: An Application of Lagrangian Relaxation," Management Science, INFORMS, vol. 25(4), pages 329-340, April.
    2. Ravi Kumar, K. & Kusiak, Andrew & Vannelli, Anthony, 1986. "Grouping of parts and components in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 24(3), pages 387-397, March.
    3. Mulvey, John M. & Beck, Michael P., 1984. "Solving capacitated clustering problems," European Journal of Operational Research, Elsevier, vol. 18(3), pages 339-348, December.
    4. Egon Balas, 1965. "An Additive Algorithm for Solving Linear Programs with Zero-One Variables," Operations Research, INFORMS, vol. 13(4), pages 517-546, August.
    5. John M. Mulvey, 1980. "Reducing the US Treasury's Taxpayer Data Base by Optimization," Interfaces, INFORMS, vol. 10(5), pages 101-112, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Brusco & Hans Köhn & Douglas Steinley, 2013. "Exact and approximate methods for a one-dimensional minimax bin-packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 611-626, July.
    2. Salvatore Ercolano & Oriana Romano, 2018. "Spending for the Environment: General Government Expenditure Trends in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 1145-1169, August.
    3. Malginov, Georgiy (Мальгинов, Георгий) & Radygin, Alexander (Радыгин, Александр), 2015. "Property management of the state treasury of the Russian Federation: some of the current trends [Управление Имуществом Государственной Казны Рф: Некоторые Актуальные Тенденции]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 4, pages 20-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lau, Kin-nam & Leung, Pui-lam & Tse, Ka-kit, 1999. "A mathematical programming approach to clusterwise regression model and its extensions," European Journal of Operational Research, Elsevier, vol. 116(3), pages 640-652, August.
    2. John G. Klincewicz & Arvind Rajan, 1994. "Using grasp to solve the component grouping problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(7), pages 893-912, December.
    3. Vakharia, Asoo J. & Mahajan, Jayashree, 2000. "Clustering of objects and attributes for manufacturing and marketing applications," European Journal of Operational Research, Elsevier, vol. 123(3), pages 640-651, June.
    4. D'Alfonso, Thomas H. & Ventura, Jose A., 1995. "Assignment of tools to machines in a flexible manufacturing system," European Journal of Operational Research, Elsevier, vol. 81(1), pages 115-133, February.
    5. Lu Han & Dachuan Xu & Donglei Du & Dongmei Zhang, 0. "An approximation algorithm for the uniform capacitated k-means problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.
    6. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.
    7. Chen, Ja-Shen & Heragu, Sunderesh S., 1999. "Stepwise decomposition approaches for large scale cell formation problems," European Journal of Operational Research, Elsevier, vol. 113(1), pages 64-79, February.
    8. Chen, Mu-Chen & Wu, Hsiao-Pin, 2005. "An association-based clustering approach to order batching considering customer demand patterns," Omega, Elsevier, vol. 33(4), pages 333-343, August.
    9. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    10. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    11. Mohamed, Zubair M. & Kumar, Ashok & Motwani, Jaideep, 1999. "An improved part grouping model for minimizing makespan in FMS," European Journal of Operational Research, Elsevier, vol. 116(1), pages 171-182, July.
    12. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    13. Ghosh, Diptesh & Sumanta Basu, 2011. "Diversified Local Search for the Traveling Salesman Problem," IIMA Working Papers WP2011-01-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    15. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.
    16. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    17. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    18. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    20. Wooseung Jang & Huay H. Lim & Thomas J. Crowe & Gail Raskin & Thomas E. Perkins, 2006. "The Missouri Lottery Optimizes Its Scheduling and Routing to Improve Efficiency and Balance," Interfaces, INFORMS, vol. 36(4), pages 302-313, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:38:y:1991:i:3:p:447-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.