IDEAS home Printed from https://ideas.repec.org/a/wly/mgtdec/v41y2020i4p624-630.html
   My bibliography  Save this article

Efficient selection of copper sales contracts for small‐ and medium‐sized mining

Author

Listed:
  • Lorenzo Reus

Abstract

The purpose of this study is to generate efficient policies for the selection and postponement of copper sales contracts by a mining company. To do so, it uses a two‐stage stochastic programming model that determines solutions considering different contract types, random prices, and risk aversion. The results show how it is possible for the selection to involve the lowest risk possible for different revenue levels required. During a period of high price volatility, an efficient solution may deliver an increase in monthly revenue of US$210,000 for a mining company that produces 50,000 tons per year, without any additional risk.

Suggested Citation

  • Lorenzo Reus, 2020. "Efficient selection of copper sales contracts for small‐ and medium‐sized mining," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 624-630, June.
  • Handle: RePEc:wly:mgtdec:v:41:y:2020:i:4:p:624-630
    DOI: 10.1002/mde.3125
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/mde.3125
    Download Restriction: no

    File URL: https://libkey.io/10.1002/mde.3125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    2. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    3. Bessembinder, Hendrik, et al, 1995. "Mean Reversion in Equilibrium Asset Prices: Evidence from the Futures Term Structure," Journal of Finance, American Finance Association, vol. 50(1), pages 361-375, March.
    4. Schwartz, Eduardo, 1998. "Valuing long-term commodity assets," Journal of Energy Finance & Development, Elsevier, vol. 3(2), pages 85-99.
    5. Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
    6. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    7. Savolainen, Jyrki, 2016. "Real options in metal mining project valuation: Review of literature," Resources Policy, Elsevier, vol. 50(C), pages 49-65.
    8. Cortazar, Gonzalo & Kovacevic, Ivo & Schwartz, Eduardo S., 2015. "Expected commodity returns and pricing models," Energy Economics, Elsevier, vol. 49(C), pages 60-71.
    9. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    10. Eduardo S. Schwartz, 1998. "Valuing Long-Term Commodity Assets," Financial Management, Financial Management Association, vol. 27(1), Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    2. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    3. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    4. Mikael Collan & Jyrki Savolainen & Pasi Luukka, 2017. "Investigating the effect of price process selection on the value of a metal mining asset portfolio," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(2), pages 107-115, July.
    5. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    6. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    7. Babak Jafarizadeh & Reidar B. Bratvold, 2021. "Project Valuation: Price Forecasts Bound to Discount Rates," Decision Analysis, INFORMS, vol. 18(2), pages 139-152, June.
    8. repec:dau:papers:123456789/1227 is not listed on IDEAS
    9. Rodriguez, J.C., 2007. "A Preference-Free Formula to Value Commodity Derivatives," Other publications TiSEM 7354a9fa-3202-40c1-aeb2-a, Tilburg University, School of Economics and Management.
    10. Ames, Matthew & Bagnarosa, Guillaume & Matsui, Tomoko & Peters, Gareth W. & Shevchenko, Pavel V., 2020. "Which risk factors drive oil futures price curves?," Energy Economics, Elsevier, vol. 87(C).
    11. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    12. repec:dau:papers:123456789/95 is not listed on IDEAS
    13. Elliott, Robert J. & Hyndman, Cody. B., 2007. "Parameter estimation in commodity markets: A filtering approach," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2350-2373, July.
    14. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    15. Bastian-Pinto, Carlos & Brando, Luiz & Hahn, Warren J., 2009. "Flexibility as a source of value in the production of alternative fuels: The ethanol case," Energy Economics, Elsevier, vol. 31(3), pages 411-422, May.
    16. Rodriguez, J.C., 2007. "A Preference-Free Formula to Value Commodity Derivatives," Discussion Paper 2007-92, Tilburg University, Center for Economic Research.
    17. repec:dau:papers:123456789/1245 is not listed on IDEAS
    18. Karl Inderfurth & Peter Kelle & Rainer Kleber, 2014. "The Effect of Material Price and Product Demand Correlations on Combined Sourcing and Inventory Management," FEMM Working Papers 140013, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    19. Hahn, Warren J. & DiLellio, James A. & Dyer, James S., 2018. "Risk premia in commodity price forecasts and their impact on valuation," Energy Economics, Elsevier, vol. 72(C), pages 393-403.
    20. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    21. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    22. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    23. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:mgtdec:v:41:y:2020:i:4:p:624-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/7976 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.