IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v24y2019i4p1409-1428.html
   My bibliography  Save this article

Option‐implied risk measures: An empirical examination on the S&P 500 index

Author

Listed:
  • Giovanni Barone‐Adesi
  • Chiara Legnazzi
  • Carlo Sala

Abstract

The forward‐looking nature of option market data allows one to derive economically based and model‐free risk measures. This article proposes an extensive analysis of the performances of option‐implied value at risk and conditional value at risk and compares them with classical risk measures for the S&P 500 index. Delivering good results both at short and long time horizons, the proposed option‐implied risk metrics emerge as a convenient alternative to the existing risk measures.

Suggested Citation

  • Giovanni Barone‐Adesi & Chiara Legnazzi & Carlo Sala, 2019. "Option‐implied risk measures: An empirical examination on the S&P 500 index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1409-1428, October.
  • Handle: RePEc:wly:ijfiec:v:24:y:2019:i:4:p:1409-1428
    DOI: 10.1002/ijfe.1743
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.1743
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.1743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    2. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    3. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Giovanni Barone Adesi, 2016. "VaR and CVaR Implied in Option Prices," JRFM, MDPI, vol. 9(1), pages 1-6, February.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Turan G. Bali & Nusret Cakici & Fousseni Chabi-Yo, 2011. "A Generalized Measure of Riskiness," Management Science, INFORMS, vol. 57(8), pages 1406-1423, August.
    8. Danielsson, Jon, 2002. "The emperor has no clothes: Limits to risk modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1273-1296, July.
    9. Xing, Yuhang & Zhang, Xiaoyan & Zhao, Rui, 2010. "What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 641-662, June.
    10. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    11. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    12. Giovanni Barone‐Adesi & Marinela Adriana Finta & Chiara Legnazzi & Carlo Sala, 2019. "WTI crude oil option implied VaR and CVaR: An empirical application," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 552-563, September.
    13. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    14. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    15. Giovanni Barone Adesi & Robert F. Engle & Loriano Mancini, 2014. "A GARCH Option Pricing Model with Filtered Historical Simulation," Palgrave Macmillan Books, in: Giovanni Barone Adesi (ed.), Simulating Security Returns: A Filtered Historical Simulation Approach, chapter 4, pages 66-108, Palgrave Macmillan.
    16. Sovan Mitra, 2015. "The relationship between conditional value at risk and option prices with a closed-form solution," The European Journal of Finance, Taylor & Francis Journals, vol. 21(5), pages 400-425, March.
    17. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    18. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    19. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    22. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826, Elsevier.
    23. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    24. Tobias Fissler & Johanna F. Ziegel & Tilmann Gneiting, 2015. "Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting," Papers 1507.00244, arXiv.org, revised Jul 2015.
    25. Robert R. Bliss & Nikolaos Panigirtzoglou, 2004. "Option-Implied Risk Aversion Estimates," Journal of Finance, American Finance Association, vol. 59(1), pages 407-446, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annalisa Molino & Carlo Sala, 2021. "Forecasting value at risk and conditional value at risk using option market data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1190-1213, November.
    2. Zhang, Ning & Su, Xiaoman & Qi, Shuyuan, 2023. "An empirical investigation of multiperiod tail risk forecasting models," International Review of Financial Analysis, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annalisa Molino & Carlo Sala, 2021. "Forecasting value at risk and conditional value at risk using option market data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1190-1213, November.
    2. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    3. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    4. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    5. Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2012. "Option pricing with discrete time jump processes," Post-Print halshs-00611706, HAL.
    6. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    7. Liao, Wen Ju & Sung, Hao-Chang, 2020. "Implied risk aversion and pricing kernel in the FTSE 100 index," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    8. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524.
    9. George Chalamandaris & Leonidas S. Rompolis, 2021. "Recovering the market risk premium from higher‐order moment risks," European Financial Management, European Financial Management Association, vol. 27(1), pages 147-186, January.
    10. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    11. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    12. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    13. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    14. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.
    15. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    16. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    17. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    18. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    19. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    20. Brennan, Michael J & LIU, XIAOQUAN & Xia, Yihong, 2005. "Option Pricing Kernels and the ICAPM," University of California at Los Angeles, Anderson Graduate School of Management qt4d90p8ss, Anderson Graduate School of Management, UCLA.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:24:y:2019:i:4:p:1409-1428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.