Forecasting volatility with outliers in Realized GARCH models
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2736
Download full text from publisher
References listed on IDEAS
- Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019.
"Dynamic semiparametric models for expected shortfall (and Value-at-Risk),"
Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
- Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
- Peter Reinhard Hansen & Zhuo Huang, 2016.
"Exponential GARCH Modeling With Realized Measures of Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
- Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," Economics Working Papers ECO2012/26, European University Institute.
- Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
- M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, July.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Balke, Nathan S & Fomby, Thomas B, 1994.
"Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
- Nathan S. Balke & Thomas B. Fomby, 1991. "Large shocks, small shocks, and economic fluctuations: outliers in macroeconomic times series," Working Papers 9101, Federal Reserve Bank of Dallas.
- Meng, Xiaochun & Taylor, James W., 2020. "Estimating Value-at-Risk and Expected Shortfall using the intraday low and range data," European Journal of Operational Research, Elsevier, vol. 280(1), pages 191-202.
- Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Giacomini, Raffaella & Komunjer, Ivana, 2005.
"Evaluation and Combination of Conditional Quantile Forecasts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
- Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
- Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
- Huang, Zhuo & Liu, Hao & Wang, Tianyi, 2016. "Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model," Economic Modelling, Elsevier, vol. 52(PB), pages 812-821.
- Charles, Amelie & Darne, Olivier, 2005. "Outliers and GARCH models in financial data," Economics Letters, Elsevier, vol. 86(3), pages 347-352, March.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
- Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
- Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Charles, Amélie & Darné, Olivier, 2014.
"Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013,"
Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
- Amélie Charles & Olivier Darné, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Post-Print hal-01122507, HAL.
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
- Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
- Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Cathy W. S. Chen & Edward M. H. Lin & Tara F. J. Huang, 2022. "Bayesian quantile forecasting via the realized hysteretic GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1317-1337, November.
- Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016.
"Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2015. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-975, CIRJE, Faculty of Economics, University of Tokyo.
- Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011.
"Evaluating Value-at-Risk Models via Quantile Regression,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
- Gaglianone, Wagner Piazza & Linton, Oliver & Lima, Luiz Renato Regis de Oliveira, 2008. "Evaluating Value-at-Risk models via Quantile regressions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 679, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
- Wagner P. Gaglianone & Luiz Renato Lima & Oliver Linton, 2008. "Evaluating Value-at-Risk Models via Quantile Regressions," Working Papers Series 161, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel, 2009. "Evaluating Value-at-Risk models via Quantile Regression," UC3M Working papers. Economics we094625, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
- Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
- Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
- Donggyu Kim & Minseog Oh & Yazhen Wang, 2022. "Conditional quantile analysis for realized GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 640-665, July.
- Fortin, Alain-Philippe & Simonato, Jean-Guy & Dionne, Georges, 2023.
"Forecasting expected shortfall: Should we use a multivariate model for stock market factors?,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 314-331.
- Fortin, Alain-Philippe & Simonato, Jean-Guy & Dionne, Georges, 2018. "Forecasting Expected Shortfall: Should we use a Multivariate Model for Stock Market Factors?," Working Papers 18-4, HEC Montreal, Canada Research Chair in Risk Management, revised 25 Jun 2021.
- Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:4:p:667-685. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.