IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v38y2019i3p236-255.html
   My bibliography  Save this article

Enhancing survey‐based investment forecasts

Author

Listed:
  • Ciaran Driver
  • Nigel Meade

Abstract

We investigate the accuracy of capital investment predictors from a national business survey of South African manufacturing. Based on data available to correspondents at the time of survey completion, we propose variables that might inform the confidence that can be attached to their predictions. Having calibrated the survey predictors' directional accuracy, we model the probability of a correct directional prediction using logistic regression with the proposed variables. For point forecasting, we compare the accuracy of rescaled survey forecasts with time series benchmarks and some survey/time series hybrid models. In addition, using the same set of variables, we model the magnitude of survey prediction errors. Directional forecast tests showed that three out of four survey predictors have value but are biased and inefficient. For shorter horizons we found that survey forecasts, enhanced by time series data, significantly improved point forecasting accuracy. For longer horizons the survey predictors were at least as accurate as alternatives. The usefulness of the more accurate of the predictors examined is enhanced by auxiliary information, namely the probability of directional accuracy and the estimated error magnitude.

Suggested Citation

  • Ciaran Driver & Nigel Meade, 2019. "Enhancing survey‐based investment forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 236-255, April.
  • Handle: RePEc:wly:jforec:v:38:y:2019:i:3:p:236-255
    DOI: 10.1002/for.2567
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2567
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciaran Driver, 2019. "Trade liberalization and South African manufacturing: Looking back with data," WIDER Working Paper Series wp-2019-30, World Institute for Development Economic Research (UNU-WIDER).
    2. Claire Giordano & Marco Marinucci & Andrea Silvestrini, 2022. "Assessing the usefulness of survey‐based data in forecasting firms' capital formation: Evidence from Italy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 491-513, April.
    3. Kladivko, Kamil & Österholm, Pär, 2020. "Can Households Predict where the Macroeconomy is Headed?," Working Papers 2020:11, Örebro University, School of Business.
    4. Blagov, Boris & Müller, Henrik & Jentsch, Carsten & Schmidt, Torsten, 2021. "The investment narrative: Improving private investment forecasts with media data," Ruhr Economic Papers 921, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Claveria, Oscar & Monte, Enric & Torra, Salvador, 2020. "Economic forecasting with evolved confidence indicators," Economic Modelling, Elsevier, vol. 93(C), pages 576-585.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2021. "“Nowcasting and forecasting GDP growth with machine-learning sentiment indicators”," AQR Working Papers 202101, University of Barcelona, Regional Quantitative Analysis Group, revised Feb 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:38:y:2019:i:3:p:236-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.