IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v40y2025i1p74-88.html
   My bibliography  Save this article

Multiple Structural Breaks in Interactive Effects Panel Data Models

Author

Listed:
  • Jan Ditzen
  • Yiannis Karavias
  • Joakim Westerlund

Abstract

This paper develops new econometric methods for multiple structural break detection in panel data models with interactive fixed effects. The new methods include tests for the presence of structural breaks, estimators for the number of breaks and their location, and a method for constructing asymptotically valid break date confidence intervals. The new methodology is applied to a large panel of US banks for a period characterized by massive quantitative easing programs aimed at lessening the impact of the global financial crisis and the COVID‐19 pandemic. The question we ask is as follows: Have these programs been successful in spurring bank lending in the US economy? The short answer turns out to be: “No”.

Suggested Citation

  • Jan Ditzen & Yiannis Karavias & Joakim Westerlund, 2025. "Multiple Structural Breaks in Interactive Effects Panel Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 74-88, January.
  • Handle: RePEc:wly:japmet:v:40:y:2025:i:1:p:74-88
    DOI: 10.1002/jae.3097
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.3097
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.3097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    2. Thomas A. Lubik & Paolo Surico, 2010. "The Lucas critique and the stability of empirical models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 177-194.
    3. Kim, Dohan & Sohn, Wook, 2017. "The effect of bank capital on lending: Does liquidity matter?," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 95-107.
    4. Bai, Jushan, 1999. "Likelihood ratio tests for multiple structural changes," Journal of Econometrics, Elsevier, vol. 91(2), pages 299-323, August.
    5. Yiannis Karavias & Paresh Kumar Narayan & Joakim Westerlund, 2023. "Structural Breaks in Interactive Effects Panels and the Stock Market Reaction to COVID-19," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 653-666, July.
    6. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    9. Marco Di Maggio & Amir Kermani & Christopher J Palmer, 2020. "How Quantitative Easing Works: Evidence on the Refinancing Channel," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(3), pages 1498-1528.
    10. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    11. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    12. Badi H. Baltagi & Chihwa Kao & Long Liu, 2017. "Estimation and identification of change points in panel models with nonstationary or stationary regressors and error term," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 85-102, March.
    13. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    14. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    15. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    16. Chakraborty, Indraneel & Goldstein, Itay & MacKinlay, Andrew, 2020. "Monetary stimulus and bank lending," Journal of Financial Economics, Elsevier, vol. 136(1), pages 189-218.
    17. Luck, Stephan & Zimmermann, Tom, 2020. "Employment effects of unconventional monetary policy: Evidence from QE," Journal of Financial Economics, Elsevier, vol. 135(3), pages 678-703.
    18. Alexander Rodnyansky & Olivier M. Darmouni, 2017. "The Effects of Quantitative Easing on Bank Lending Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 30(11), pages 3858-3887.
    19. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    20. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    21. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Ditzen & Yiannis Karavias & Joakim Westerlund, 2022. "Multiple Structural Breaks in Interactive Effects Panel Data and the Impact of Quantitative Easing on Bank Lending," Papers 2211.06707, arXiv.org, revised Jan 2023.
    2. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    3. Otilia Boldea & Bettina Drepper & Zhuojiong Gan, 2020. "Change point estimation in panel data with time‐varying individual effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 712-727, September.
    4. Jiang, Peiyun & Kurozumi, Eiji, 2021. "A new test for common breaks in heterogeneous panel data models," Discussion paper series HIAS-E-107, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    5. Wang, Yiren & Phillips, Peter C.B. & Su, Liangjun, 2024. "Panel data models with time-varying latent group structures," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    7. Ma, Shujie & Su, Liangjun, 2018. "Estimation of large dimensional factor models with an unknown number of breaks," Journal of Econometrics, Elsevier, vol. 207(1), pages 1-29.
    8. Yiannis Karavias & Paresh Kumar Narayan & Joakim Westerlund, 2023. "Structural Breaks in Interactive Effects Panels and the Stock Market Reaction to COVID-19," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 653-666, July.
    9. Kapoor, Supriya & Peia, Oana, 2021. "The impact of quantitative easing on liquidity creation," Journal of Banking & Finance, Elsevier, vol. 122(C).
    10. Jesús Clemente & María Dolores Gadea & Antonio Montañés & Marcelo Reyes, 2017. "Structural Breaks, Inflation and Interest Rates: Evidence from the G7 Countries," Econometrics, MDPI, vol. 5(1), pages 1-17, February.
    11. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    12. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    13. Cohen, Lior, 2023. "The effects of the BoJ's ETF purchases on equities and corporate investment," Economic Modelling, Elsevier, vol. 129(C).
    14. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2019. "Structural changes in heterogeneous panels with endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 883-892, September.
    15. Neely, Christopher J., 2022. "How persistent are unconventional monetary policy effects?," Journal of International Money and Finance, Elsevier, vol. 126(C).
    16. Huanjun Zhu & Vasilis Sarafidis & Mervyn J Silvapulle, 2020. "A new structural break test for panels with common factors [Panel data models with multiple time-varying individual effects]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 137-155.
    17. Huang, Wenxin & Jin, Sainan & Phillips, Peter C.B. & Su, Liangjun, 2021. "Nonstationary panel models with latent group structures and cross-section dependence," Journal of Econometrics, Elsevier, vol. 221(1), pages 198-222.
    18. Georg Keilbar & Juan M. Rodriguez-Poo & Alexandra Soberon & Weining Wang, 2022. "A projection based approach for interactive fixed effects panel data models," Papers 2201.11482, arXiv.org, revised Feb 2025.
    19. Shahnaz Parsaeian, 2024. "Stein-like Common Correlated Effects Estimation under Structural Breaks," Econometrics, MDPI, vol. 12(2), pages 1-23, April.
    20. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:40:y:2025:i:1:p:74-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.