IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v22y2015i2p133-152.html
   My bibliography  Save this article

Particle Swarm Optimization in Agent‐Based Economic Simulations of the Cournot Market Model

Author

Listed:
  • Michael K. Maschek

Abstract

The numerous variations of the particle swarm optimization (PSO) algorithm originally proposed by Kennedy and Eberhart (. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks IV. IEEE: Piscataway, NJ; 1942–1948) have proven to be powerful optimization methods that rely on exploiting simple analogues of social interaction. In this study, PSO is adopted in lieu of the social or individual evolutionary learning algorithms as a model of individual adaptation in an agent‐based computational model. In this examination of the simple Cournot market framework, each agent's individual strategy evolves according to the PSO algorithm. The model is one in which agents’ strategies must adapt interdependently. That is, a change in one particle may not only affect its performance but also other particles within the same swarm simultaneously. The dynamics and convergence properties associated with this model are compared with those where evolutionary learning algorithms are employed. Similar to evolutionary learning, convergence to equilibrium is dependent on the scope of learning, social or individual. While convergence is dependent on some of the algorithm parameters, prices resulting from the individual PSO are nearest the Cournot equilibrium and those from social PSO are nearest the Walrasian equilibrium in all cases. For particular parameterizations, certain advantages over evolutionary algorithms exist: in the main, decreasing volatility in market prices does not require an election operator or the addition of free parameters through two‐level learning. Copyright © 2015 John Wiley & Sons, Ltd.

Suggested Citation

  • Michael K. Maschek, 2015. "Particle Swarm Optimization in Agent‐Based Economic Simulations of the Cournot Market Model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(2), pages 133-152, April.
  • Handle: RePEc:wly:isacfm:v:22:y:2015:i:2:p:133-152
    DOI: 10.1002/isaf.1367
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1367
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    3. Ludo Waltman & Nees Eck & Rommert Dekker & Uzay Kaymak, 2011. "Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 737-756, December.
    4. Michael Maschek, 2010. "Intelligent Mutation Rate Control in an Economic Application of Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 25-49, January.
    5. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    6. Jasmina Arifovic & Michael Maschek, 2006. "Revisiting Individual Evolutionary Learning in the Cobweb Model – An Illustration of the Virtual Spite-Effect," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 333-354, November.
    7. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    8. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
    9. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    10. Floortje Alkemade & Han Poutré & Hans Amman, 2009. "Robust Evolutionary Algorithm Design for Socio-Economic Simulation: A Correction," Computational Economics, Springer;Society for Computational Economics, vol. 33(1), pages 99-101, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Manuel Sánchez-Cartas & Alberto Tejero & Gonzalo León, 2021. "Algorithmic Pricing and Price Gouging. Consequences of High-Impact, Low Probability Events," Sustainability, MDPI, vol. 13(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludo Waltman & Nees Eck & Rommert Dekker & Uzay Kaymak, 2011. "Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 737-756, December.
    2. Tong Zhang & B. Brorsen, 2009. "Particle Swarm Optimization Algorithm for Agent-Based Artificial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 34(4), pages 399-417, November.
    3. Arifovic, Jasmina & Karaivanov, Alexander, 2010. "Learning by doing vs. learning from others in a principal-agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1967-1992, October.
    4. Waltman, L. & van Eck, N.J.P., 2009. "A Mathematical Analysis of the Long-run Behavior of Genetic Algorithms for Social Modeling," ERIM Report Series Research in Management ERS-2009-011-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    6. Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.
    7. Chernomaz, K. & Goertz, J.M.M., 2023. "(A)symmetric equilibria and adaptive learning dynamics in small-committee voting," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    8. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
    9. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    10. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.
    11. Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.
    12. Anufriev, Mikhail & Kopányi, Dávid, 2018. "Oligopoly game: Price makers meet price takers," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 84-103.
    13. Junyi Xu, 2021. "Reinforcement Learning in a Cournot Oligopoly Model," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1001-1024, December.
    14. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    15. Jasmina Arifovic & Michael Maschek, 2006. "Revisiting Individual Evolutionary Learning in the Cobweb Model – An Illustration of the Virtual Spite-Effect," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 333-354, November.
    16. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    17. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    18. Hommes, Cars & Lux, Thomas, 2013. "Individual Expectations And Aggregate Behavior In Learning-To-Forecast Experiments," Macroeconomic Dynamics, Cambridge University Press, vol. 17(2), pages 373-401, March.
    19. Tong Zhang & B. Brorsen, 2011. "Oligopoly firms with quantity-price strategic decisions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(2), pages 157-170, November.
    20. Vallée, Thomas & YIldIzoglu, Murat, 2009. "Convergence in the finite Cournot oligopoly with social and individual learning," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 670-690, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:22:y:2015:i:2:p:133-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.