IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v34y2009i4p399-417.html
   My bibliography  Save this article

Particle Swarm Optimization Algorithm for Agent-Based Artificial Markets

Author

Listed:
  • Tong Zhang
  • B. Brorsen

Abstract

No abstract is available for this item.

Suggested Citation

  • Tong Zhang & B. Brorsen, 2009. "Particle Swarm Optimization Algorithm for Agent-Based Artificial Markets," Computational Economics, Springer;Society for Computational Economics, vol. 34(4), pages 399-417, November.
  • Handle: RePEc:kap:compec:v:34:y:2009:i:4:p:399-417
    DOI: 10.1007/s10614-009-9171-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-009-9171-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-009-9171-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    3. Kutschinski, Erich & Uthmann, Thomas & Polani, Daniel, 2003. "Learning competitive pricing strategies by multi-agent reinforcement learning," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2207-2218.
    4. Dawid, Herbert, 1999. "On the convergence of genetic learning in a double auction market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1545-1567, September.
    5. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    6. Jasmina Arifovic & Michael Maschek, 2006. "Revisiting Individual Evolutionary Learning in the Cobweb Model – An Illustration of the Virtual Spite-Effect," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 333-354, November.
    7. Hamm, Lonnie & Brorsen, B. Wade, 2002. "Global Optimization Methods," 2002 Annual Meeting, July 28-31, 2002, Long Beach, California 36631, Western Agricultural Economics Association.
    8. Kutschinski, Erich & Uthmann, Thomas & Polani, Daniel, 2003. "Learning competitive pricing strategies by multi-agent reinforcement learning," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11-12), pages 2207-2218, September.
    9. Riechmann, Thomas, 2001. "Genetic algorithm learning and evolutionary games," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 1019-1037, June.
    10. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    11. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lijun & An, Haizhong & Liu, Xiaojia & Huang, Xuan, 2016. "Selecting dynamic moving average trading rules in the crude oil futures market using a genetic approach," Applied Energy, Elsevier, vol. 162(C), pages 1608-1618.
    2. Juan Manuel Sánchez-Cartas & Alberto Tejero & Gonzalo León, 2021. "Algorithmic Pricing and Price Gouging. Consequences of High-Impact, Low Probability Events," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    3. Christopher Boyer & B. Brorsen, 2014. "Implications of a Reserve Price in an Agent-Based Common-Value Auction," Computational Economics, Springer;Society for Computational Economics, vol. 43(1), pages 33-51, January.
    4. Christopher Boyer & B. Brorsen & Tong Zhang, 2014. "Common-value auction versus posted-price selling: an agent-based model approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(1), pages 129-149, April.
    5. Tong Zhang & B. Brorsen, 2011. "Oligopoly firms with quantity-price strategic decisions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(2), pages 157-170, November.
    6. Liu, Xiaojia & An, Haizhong & Wang, Lijun & Jia, Xiaoliang, 2017. "An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms," Applied Energy, Elsevier, vol. 185(P2), pages 1778-1787.
    7. Christopher N. Boyer & B. Wade Brorsen & James R. Fain, 2015. "Private‐Value Auction Versus Posted‐Price Selling: An Agent‐Based Model Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 249-262, October.
    8. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    2. Michael K. Maschek, 2015. "Particle Swarm Optimization in Agent‐Based Economic Simulations of the Cournot Market Model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(2), pages 133-152, April.
    3. Junyi Xu, 2021. "Reinforcement Learning in a Cournot Oligopoly Model," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1001-1024, December.
    4. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
    5. Arifovic, Jasmina & Karaivanov, Alexander, 2010. "Learning by doing vs. learning from others in a principal-agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1967-1992, October.
    6. Chernomaz, K. & Goertz, J.M.M., 2023. "(A)symmetric equilibria and adaptive learning dynamics in small-committee voting," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    7. Tong Zhang & B. Brorsen, 2011. "Oligopoly firms with quantity-price strategic decisions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(2), pages 157-170, November.
    8. Ludo Waltman & Nees Eck & Rommert Dekker & Uzay Kaymak, 2011. "Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 737-756, December.
    9. Kirill Chernomaz, 2014. "Adaptive learning in an asymmetric auction: genetic algorithm approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(1), pages 27-51, April.
    10. Anufriev, Mikhail & Kopányi, Dávid, 2018. "Oligopoly game: Price makers meet price takers," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 84-103.
    11. Jasmina Arifovic & Michael Maschek, 2006. "Revisiting Individual Evolutionary Learning in the Cobweb Model – An Illustration of the Virtual Spite-Effect," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 333-354, November.
    12. Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.
    13. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    14. repec:zbw:iamodp:109915 is not listed on IDEAS
    15. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    16. Graubner, Marten, 2011. "The Spatial Agent-based Competition Model (SpAbCoM)," IAMO Discussion Papers 109915, Institute of Agricultural Development in Transition Economies (IAMO).
    17. Vallée, Thomas & YIldIzoglu, Murat, 2009. "Convergence in the finite Cournot oligopoly with social and individual learning," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 670-690, November.
    18. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    19. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.
    20. Graupner, Marten, 2011. "The Spatial Agent-based Competition Model (SpAbCoM) [Das räumliche agenten-basierte Wettbewerbsmodell SpAbCoM]," IAMO Discussion Papers 135, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    21. Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:34:y:2009:i:4:p:399-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.