IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v10y2001i2p115-126.html
   My bibliography  Save this article

Wrapped input selection using multilayer perceptrons for repeat‐purchase modeling in direct marketing

Author

Listed:
  • Stijn Viaene
  • Bart Baesens
  • Dirk Van den Poel
  • Guido Dedene
  • Jan Vanthienen

Abstract

In this paper, we try to validate existing theory on and develop additional insight into repeat‐purchase behavior in a direct marketing setting by means of an illuminating case study. The case involves the detection and qualification of the most relevant RFM (Recency, Frequency and Monetary) variables, using a neural network wrapper as our input pruning method. Results indicate that elimination of redundant and/or irrelevant inputs by means of the discussed input selection method allows us to significantly reduce model complexity without degrading the predictive generalization ability. It is precisely this issue that will enable us to infer some interesting marketing conclusions concerning the relative importance of the RFM predictor categories and their operationalizations. The empirical findings highlight the importance of a combined use of RFM variables in predicting repeat‐purchase behavior. However, the study also reveals the dominant role of the frequency category. Results indicate that a model including only frequency variables still yields satisfactory classification accuracy compared to the optimally reduced model. Copyright © 2001 John Wiley & Sons, Ltd.

Suggested Citation

  • Stijn Viaene & Bart Baesens & Dirk Van den Poel & Guido Dedene & Jan Vanthienen, 2001. "Wrapped input selection using multilayer perceptrons for repeat‐purchase modeling in direct marketing," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(2), pages 115-126, June.
  • Handle: RePEc:wly:isacfm:v:10:y:2001:i:2:p:115-126
    DOI: 10.1002/isaf.195
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.195
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dekimpe, Marnik G. & Degraeve, Zeger, 1997. "The attrition of volunteers," European Journal of Operational Research, Elsevier, vol. 98(1), pages 37-51, April.
    2. Jan Roelf Bult & Tom Wansbeek, 1995. "Optimal Selection for Direct Mail," Marketing Science, INFORMS, vol. 14(4), pages 378-394.
    3. Piramuthu, Selwyn, 1999. "Financial credit-risk evaluation with neural and neurofuzzy systems," European Journal of Operational Research, Elsevier, vol. 112(2), pages 310-321, January.
    4. Frank M. Bass & Jerry Wind, 1995. "Introduction to the Special Issue: Empirical Generalizations in Marketing," Marketing Science, INFORMS, vol. 14(3_supplem), pages 1-5.
    5. Lacher, R. C. & Coats, Pamela K. & Sharma, Shanker C. & Fant, L. Franklin, 1995. "A neural network for classifying the financial health of a firm," European Journal of Operational Research, Elsevier, vol. 85(1), pages 53-65, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    2. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    3. Malhotra, Rashmi & Malhotra, D. K., 2002. "Differentiating between good credits and bad credits using neuro-fuzzy systems," European Journal of Operational Research, Elsevier, vol. 136(1), pages 190-211, January.
    4. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    5. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    6. Durango-Cohen, Elizabeth J., 2013. "Modeling contribution behavior in fundraising: Segmentation analysis for a public broadcasting station," European Journal of Operational Research, Elsevier, vol. 227(3), pages 538-551.
    7. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    8. Witell, Lars & Gebauer, Heiko & Jaakkola, Elina & Hammedi, Wafa & Patricio, Lia & Perks, Helen, 2017. "A bricolage perspective on service innovation," Journal of Business Research, Elsevier, vol. 79(C), pages 290-298.
    9. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    10. Thomas J. Steenburgh & Andrew Ainslie & Peder Hans Engebretson, 2003. "Massively Categorical Variables: Revealing the Information in Zip Codes," Marketing Science, INFORMS, vol. 22(1), pages 40-57, August.
    11. Mahsa Samsami & Ralf Wagner, 2021. "Investment Decisions with Endogeneity: A Dirichlet Tree Analysis," JRFM, MDPI, vol. 14(7), pages 1-19, July.
    12. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    13. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    14. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    15. van Heerde, Harald J. & Dekimpe, Marnik G., 2024. "Household and retail panel data in retailing research: Time for a renaissance?," Journal of Retailing, Elsevier, vol. 100(1), pages 104-113.
    16. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    17. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
    18. Yingqiu Zhu & Qiong Deng & Danyang Huang & Bingyi Jing & Bo Zhang, 2021. "Clustering based on Kolmogorov–Smirnov statistic with application to bank card transaction data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 558-578, June.
    19. Srđan Jelinek & Pavle Milošević & Aleksandar Rakićević & Ana Poledica & Bratislav Petrović, 2022. "A Novel IBA-DE Hybrid Approach for Modeling Sovereign Credit Ratings," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
    20. repec:dgr:rugccs:199914 is not listed on IDEAS
    21. repec:dgr:rugsom:99b35 is not listed on IDEAS
    22. Verlegh, Peeter W. J. & Steenkamp, Jan-Benedict E. M., 1999. "A review and meta-analysis of country-of-origin research," Journal of Economic Psychology, Elsevier, vol. 20(5), pages 521-546, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:10:y:2001:i:2:p:115-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.