IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v29y2024i2p1205-1218.html
   My bibliography  Save this article

Political risk and environmental quality in Brazil: Role of green finance and green innovation

Author

Listed:
  • Dervis Kirikkaleli
  • Tomiwa Sunday Adebayo

Abstract

The quest for ecological sustainability while reducing the impacts of environmental deterioration has become a worldwide endeavour. Furthermore, it is unclear how developing economies such as Brazil can considerably improve environmental quality (EQ). This paper contributes to the ongoing literature by evaluating the effect of green finance, economic growth, political risk, social globalization and green innovation on environmental quality in Brazil. The study used data spanning between 2000Q1 and 2018Q4. Unlike other investigations, the current study used load capacity factor as a proxy for environmental quality, which considers both demand and supply sides of environmental issues. The current study applied the novel dynamic ARDL to capture the short and long‐run nexus. The bootstrap causality test was also applied to capture causal connection instabilities over time. The results of this study are as follows: (1) a significant and positive association was found between political risk, green finance, green innovation and social globalization environmental quality; (2) a significant and negative interplay was detected between economic growth and environmental quality; (3) The time‐varying causality shows a feedback causality at various periods between political risk, green finance, green innovation, economic growth, social globalization and environmental quality. This study also serves as a reference point for governments and policymakers in terms of investing in eco‐friendly technologies in order to improve environmental quality.

Suggested Citation

  • Dervis Kirikkaleli & Tomiwa Sunday Adebayo, 2024. "Political risk and environmental quality in Brazil: Role of green finance and green innovation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1205-1218, April.
  • Handle: RePEc:wly:ijfiec:v:29:y:2024:i:2:p:1205-1218
    DOI: 10.1002/ijfe.2732
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2732
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soren Jordan & Andrew Q. Philips, 2018. "Cointegration testing and dynamic simulations of autoregressive distributed lag modelsJournal: Stata Journal," Stata Journal, StataCorp LP, vol. 18(4), pages 902-923, December.
    2. Clarence Tolliver & Hidemichi Fujii & Alexander Ryota Keeley & Shunsuke Managi, 2021. "Green Innovation and Finance in Asia," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 67-87, January.
    3. Ying Guo & LiFang Wang & Yanyu Chen, 2020. "Green Entrepreneurial Orientation and Green Innovation: The Mediating Effect of Supply Chain Learning," SAGE Open, , vol. 10(1), pages 21582440198, January.
    4. Samour, Ahmed & Moyo, Delani & Tursoy, Turgut, 2022. "Renewable energy, banking sector development, and carbon dioxide emissions nexus: A path toward sustainable development in South Africa," Renewable Energy, Elsevier, vol. 193(C), pages 1032-1040.
    5. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    6. Ioan Batrancea & Larissa Batrancea & Malar Maran Rathnaswamy & Horia Tulai & Gheorghe Fatacean & Mircea-Iosif Rus, 2020. "Greening the Financial System in USA, Canada and Brazil: A Panel Data Analysis," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    7. Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2021. "Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: application of wavelet tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16057-16082, November.
    8. Ugur Korkut Pata, 2021. "Do renewable energy and health expenditures improve load capacity factor in the USA and Japan? A new approach to environmental issues," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(9), pages 1427-1439, December.
    9. Ho Thuy Ngoc & Bui Anh Tuan & Nguyen Van Duy & Dao Trung Kien & Nguyen Ngoc Dat, 2021. "Impact of foreign direct investment and urbanisation on CO 2 emissions in Vietnam," International Journal of Business and Globalisation, Inderscience Enterprises Ltd, vol. 27(3), pages 313-332.
    10. Ulucak, Recep & Danish, & Ozcan, Burcu, 2020. "Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents," Resources Policy, Elsevier, vol. 69(C).
    11. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    12. Dervis Kirikkaleli, 2020. "Does political risk matter for economic and financial risks in Venezuela?," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-10, December.
    13. Acheampong, Alex O. & Dzator, Janet & Shahbaz, Muhammad, 2021. "Empowering the powerless: Does access to energy improve income inequality?," Energy Economics, Elsevier, vol. 99(C).
    14. Arshian Sharif & Najia Saqib & Kangyin Dong & Syed Abdul Rehman Khan, 2022. "Nexus between green technology innovation, green financing, and CO2 emissions in the G7 countries: The moderating role of social globalisation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1934-1946, December.
    15. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    16. Zhai, Xueqi & An, Yunfei, 2021. "The relationship between technological innovation and green transformation efficiency in China: An empirical analysis using spatial panel data," Technology in Society, Elsevier, vol. 64(C).
    17. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xinlu & Adebayo, Tomiwa Sunday & Kong, Xianli & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Relating energy innovations and natural resources as determinants of environmental sustainability: The role of globalization in G7 countries," Resources Policy, Elsevier, vol. 79(C).
    2. Karasoy, Alper, 2022. "Is innovative technology a solution to Japan's long-run energy insecurity? Dynamic evidence from the linear and nonlinear methods," Technology in Society, Elsevier, vol. 70(C).
    3. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    4. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    5. Maxwell Chukwudi Udeagha & Marthinus Christoffel Breitenbach, 2023. "The Role of Fiscal Decentralization in Limiting CO2 Emissions in South Africa," Biophysical Economics and Resource Quality, Springer, vol. 8(3), pages 1-30, September.
    6. Deng, Ying & Cao, Zhitao & Yang, Na, 2024. "Understanding the nexus between fintech, natural resources, green investment, and environmental sustainability in China: A DYNARDL approach," Resources Policy, Elsevier, vol. 91(C).
    7. Pata, Ugur Korkut & Ertugrul, Hasan Murat, 2023. "Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis," Resources Policy, Elsevier, vol. 81(C).
    8. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    9. Zhou, Runyu & Abbasi, Kashif Raza & Salem, Sultan & Almulhim, Abdulaziz.I. & Alvarado, Rafael, 2022. "Do natural resources, economic growth, human capital, and urbanization affect the ecological footprint? A modified dynamic ARDL and KRLS approach," Resources Policy, Elsevier, vol. 78(C).
    10. Emrah Beşe & H. Swint Friday & Salih Kalaycı, 2024. "Examining the Relationship between Inflation Instability and Ecological Footprint: Evidence from Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 460-467, March.
    11. Shu, Xiaoyang & Usman, Muhammad & Ahmad, Paiman & Irfan, Muhammad, 2024. "Analyzing the asymmetric FinTech services under natural resources, and renewable energy in the future environmental performance: New insights from STIRPAT model framework," Resources Policy, Elsevier, vol. 92(C).
    12. Zhang, Jinjun & Abbasi, Kashif Raza & Hussain, Khadim & Akram, Sabahat & Alvarado, Rafael & Almulhim, Abdulaziz I., 2022. "Another perspective towards energy consumption factors in Pakistan: Fresh policy insights from novel methodological framework," Energy, Elsevier, vol. 249(C).
    13. Kartal, Mustafa Tevfik & Pata, Ugur Korkut & Kılıç Depren, Serpil & Depren, Özer, 2023. "Effects of possible changes in natural gas, nuclear, and coal energy consumption on CO2 emissions: Evidence from France under Russia’s gas supply cuts by dynamic ARDL simulations approach," Applied Energy, Elsevier, vol. 339(C).
    14. Maxwell Chukwudi Udeagha & Nicholas Ngepah, 2022. "Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa," Sustainability, MDPI, vol. 14(16), pages 1-35, August.
    15. Wang, Zihan & Chen, Xi & Ullah, Sami & Abbas, Shujaat, 2023. "Resource curse or blessing? Evaluating the role of natural resource, social globalization, and environmental sustainability in China," Resources Policy, Elsevier, vol. 85(PA).
    16. Hossain, Mohammad Razib & Rana, Md. Jaber & Saha, Sourav Mohan & Haseeb, Mohammad & Islam, Md. Sayemul & Amin, Md. Ruhul & Hossain, Md. Emran, 2023. "Role of energy mix and eco-innovation in achieving environmental sustainability in the USA using the dynamic ARDL approach: Accounting the supply side of the ecosystem," Renewable Energy, Elsevier, vol. 215(C).
    17. Jiang, Zuopeng & Jia, Xuhong & Liao, Jiajia, 2024. "Natural resources, renewable energy, and healthcare expenditure in the pursuit of sustainable development amidst inflation reduction act of 2022," Resources Policy, Elsevier, vol. 89(C).
    18. Lv, Zhaojiang & Chen, Lan & Ali, Syed Ahtsham & Muda, Iskandar & Alromaihi, Abdullah & Boltayev, Jurabek Yusufovich, 2024. "Financial technologies, green technologies and natural resource nexus with sustainable development goals: Evidence from resource abundant economies using MMQR estimation," Resources Policy, Elsevier, vol. 89(C).
    19. Yongming Huang & Muhammed Ashiq Villanthenkodath & Mohammad Haseeb, 2023. "The nexus between eco‐friendly technology and environmental degradation in India: Does the N or inverted N‐shape load capacity curve(LCC) hypothesis hold?," Natural Resources Forum, Blackwell Publishing, vol. 47(2), pages 276-297, May.
    20. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:29:y:2024:i:2:p:1205-1218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.