IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v28y2023i2p1653-1666.html
   My bibliography  Save this article

Volatility dynamics of the Tunisian stock market before and during the COVID‐19 outbreak: Evidence from the GARCH family models

Author

Listed:
  • Mohamed Fakhfekh
  • Ahmed Jeribi
  • Marwa Ben Salem

Abstract

The aim of this article is to choose the appropriate GARCH model to analyse the volatility dynamics of the Tunisian sectorial stock market indices during the COVID‐19 outbreak period. We explore the optimal conditional heteroscedasticity model with regards to goodness‐of‐fit to these sectorial indices. In particular, it proposes four models (EGARCH, FIGARCH, FIEGARCH and TGARCH) to measure asymmetric and persistence volatility. Our findings point to three interesting results. First, following the COVID‐19 outbreak, volatility is more persistent in all series. Second, the results show that building constructs materials, construction and food and beverage sector return volatilities have an insignificant asymmetric effect while consumer service, financials and distribution, industrials, basic materials and banks sector return volatilities have relatively high positive and significant asymmetric effect compared with those during the pre‐COVID‐19 period. Finally, the findings show that financial services, automobile and parts, insurance and TUNINDEX20 sectors have insignificant leverage effect. Our results can thus be useful to investors when accounting for future volatility and implementing hedging strategies under COVID‐19 crisis.

Suggested Citation

  • Mohamed Fakhfekh & Ahmed Jeribi & Marwa Ben Salem, 2023. "Volatility dynamics of the Tunisian stock market before and during the COVID‐19 outbreak: Evidence from the GARCH family models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1653-1666, April.
  • Handle: RePEc:wly:ijfiec:v:28:y:2023:i:2:p:1653-1666
    DOI: 10.1002/ijfe.2499
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2499
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    3. Fakhfekh, Mohamed & Hachicha, Nejib & Jawadi, Fredj & Selmi, Nadhem & Idi Cheffou, Abdoulkarim, 2016. "Measuring volatility persistence for conventional and Islamic banks: An FI-EGARCH approach," Emerging Markets Review, Elsevier, vol. 27(C), pages 84-99.
    4. John Elder & Apostolos Serletis, 2008. "Long memory in energy futures prices," Review of Financial Economics, John Wiley & Sons, vol. 17(2), pages 146-155.
    5. repec:eme:mfppss:v:41:y:2015:i:10:p:1112-1135 is not listed on IDEAS
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    8. Choi, Sun-Yong, 2020. "Industry volatility and economic uncertainty due to the COVID-19 pandemic: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 37(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ionuț Nica & Ștefan Ionescu & Camelia Delcea & Nora Chiriță, 2024. "Quantitative Modeling of Financial Contagion: Unraveling Market Dynamics and Bubble Detection Mechanisms," Risks, MDPI, vol. 12(2), pages 1-42, February.
    2. Huang, Yirong & Luo, Yi, 2024. "Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fakhfekh, Mohamed & Jeribi, Ahmed, 2020. "Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory GARCH models," Research in International Business and Finance, Elsevier, vol. 51(C).
    2. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    3. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    4. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    5. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    6. Stavros Stavroyiannis, 2017. "A note on the Nelson Cao inequality constraints in the GJR-GARCH model: Is there a leverage effect?," Papers 1705.00535, arXiv.org.
    7. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    8. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    9. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    10. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    11. Tarek Bouazizi & Zouhaier Hadhek & Fatma Mrad & Mosbah Lafi, 2021. "Changes in Demand for Crude Oil and its Correlation with Crude Oil and Stock Market Returns Volatilities: Evidence from Three Asian Oil Importing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 27-43.
    12. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    13. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    14. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    15. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    16. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    17. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2003. "LARCH, leverage and long memory," LSE Research Online Documents on Economics 2020, London School of Economics and Political Science, LSE Library.
    18. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    19. Daouk, Hazem & Guo, Jie Qun, 2003. "Switching Asymmetric GARCH and Options on a Volatility Index," Working Papers 127187, Cornell University, Department of Applied Economics and Management.
    20. Lv, Xiaodong & Shan, Xian, 2013. "Modeling natural gas market volatility using GARCH with different distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5685-5699.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:28:y:2023:i:2:p:1653-1666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.