IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2812-d1475874.html
   My bibliography  Save this article

Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model

Author

Listed:
  • Shengdong Mu

    (Collaborative Innovation Center of Green Development in the Wuling Shan Region, Yangtze Normal University, Chongqing 408100, China
    Chongqing Vocational College of Transportation, Chongqing 402200, China
    Department of Business Administration, International College, Krirk University, Bangkok 10220, Thailand
    These authors contributed equally to this work.)

  • Boyu Liu

    (School of Innovation and Entrepreneurship, Hubei University of Economics, Wuhan 430000, China
    These authors contributed equally to this work.)

  • Jijian Gu

    (Chongqing Vocational College of Transportation, Chongqing 402200, China)

  • Chaolung Lien

    (Department of Business Administration, International College, Krirk University, Bangkok 10220, Thailand)

  • Nedjah Nadia

    (Department of Electronics Engineering and Telecommunications, State University of Rio de Janeiro, Rio de Janeiro 205513, Brazil)

Abstract

Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances the analysis of temporal dependencies between data by introducing graph attention networks with multi-hop neighbor nodes while incorporating the temporal attention mechanism of long short-term memory (LSTM) to effectively address the potential interdependencies in the data structure. In addition, by assigning different learning weights to different neighbor nodes, the model can better integrate the correlation between node features. To verify the accuracy of the proposed model, this study utilized the closing prices of the Hong Kong Hang Seng Index (HSI) from 31 December 1986 to 31 December 2023 for analysis. By comparing it with nine other forecasting models, the experimental results show that the STBL model achieves more accurate predictions of the closing prices for short-term, medium-term, and long-term forecasts of the stock index.

Suggested Citation

  • Shengdong Mu & Boyu Liu & Jijian Gu & Chaolung Lien & Nedjah Nadia, 2024. "Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model," Mathematics, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2812-:d:1475874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    2. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiguo Huang & Linyu Cao & Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2024. "Enhancing Portfolio Optimization: A Two-Stage Approach with Deep Learning and Portfolio Optimization," Mathematics, MDPI, vol. 12(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeynep Cipiloglu Yildiz & Selim Baha Yildiz, 2022. "A portfolio construction framework using LSTM‐based stock markets forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2356-2366, April.
    2. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    3. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    4. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    5. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    6. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    7. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    8. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    9. Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022. "Voting: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
    10. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    11. Barua, Ronil & Sharma, Anil K., 2022. "Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions," Finance Research Letters, Elsevier, vol. 49(C).
    12. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    13. Alireza Jafari & Saman Haratizadeh, 2022. "GCNET: graph-based prediction of stock price movement using graph convolutional network," Papers 2203.11091, arXiv.org, revised Aug 2022.
    14. Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
    15. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    16. Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.
    17. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    18. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    19. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    20. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2812-:d:1475874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.