IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v27y2022i2p1769-1784.html
   My bibliography  Save this article

Hedging capabilities of Bitcoin for Asian currencies

Author

Listed:
  • Takuji Kinkyo

Abstract

This study investigates whether Bitcoin (BTC) can provide a hedge against the fiat currencies in Asia over various investment horizons. We focus on Asia because it is one of the fastest‐growing regions worldwide, where cryptocurrencies are actively traded. A wavelet transform technique is combined with a multivariate factor stochastic volatility (SV) model to examine the dynamic correlation properties and risk reduction effectiveness of BTC in both the time and frequency domains. We use gold and oil as benchmarks and compared their results with those of BTC. The estimated correlations indicate that the Asian currencies tend to be negatively correlated with BTC; therefore, the latter could provide a hedge against the former over the medium (8–32 days) and long (32–64 days) terms. By contrast, Asian currencies tend to be positively correlated with oil and gold for the same horizons. We also analyze the downside risk reduction effectiveness of BTC for the portfolio of Asian currencies and find that BTC provides better risk reduction than oil and gold, particularly over the medium and long terms. This study makes significant contributions to the literature by demonstrating that the correlation properties and risk reduction effectiveness of BTC differ depending on the investment horizons. We believe our findings using the wavelet‐based SV model can help heterogeneous investors detect portfolio risks and thus, identify optimal hedging strategies over various investment horizons.

Suggested Citation

  • Takuji Kinkyo, 2022. "Hedging capabilities of Bitcoin for Asian currencies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1769-1784, April.
  • Handle: RePEc:wly:ijfiec:v:27:y:2022:i:2:p:1769-1784
    DOI: 10.1002/ijfe.2241
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2241
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    2. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    3. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    4. Cai, Xiao Jing & Tian, Shuairu & Yuan, Nannan & Hamori, Shigeyuki, 2017. "Interdependence between oil and East Asian stock markets: Evidence from wavelet coherence analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 206-223.
    5. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    6. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    7. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    8. Kristjanpoller, Werner & Bouri, Elie, 2019. "Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1057-1071.
    9. Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other assets during bear and bull markets," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5935-5949, November.
    10. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2013. "A wavelet decomposition approach to crude oil price and exchange rate dependence," Economic Modelling, Elsevier, vol. 32(C), pages 42-57.
    11. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    12. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    13. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    14. Mensi, Walid & Rehman, Mobeen Ur & Al-Yahyaee, Khamis Hamed & Al-Jarrah, Idries Mohammad Wanas & Kang, Sang Hoon, 2019. "Time frequency analysis of the commonalities between Bitcoin and major Cryptocurrencies: Portfolio risk management implications," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 283-294.
    15. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    16. Walter Ledermann, 1937. "On the rank of the reduced correlational matrix in multiple-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 2(2), pages 85-93, June.
    17. Meng, Xiangcai & Huang, Chia-Hsing, 2019. "The time-frequency co-movement of Asian effective exchange rates: A wavelet approach with daily data," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 131-148.
    18. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    19. Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
    20. Hussain Shahzad, Syed Jawad & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2020. "Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin," Economic Modelling, Elsevier, vol. 87(C), pages 212-224.
    21. Mensi, Walid & Hkiri, Besma & Al-Yahyaee, Khamis H. & Kang, Sang Hoon, 2018. "Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 74-102.
    22. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    23. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    24. Guesmi, Khaled & Saadi, Samir & Abid, Ilyes & Ftiti, Zied, 2019. "Portfolio diversification with virtual currency: Evidence from bitcoin," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 431-437.
    25. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolawole Ibrahim Gbolahan, 2023. "An Empirical Investigation of Bitcoin Hedging Capabilities against Inflation using VECM: The Case of United States, Eurozone, Philippines, Ukraine, Canada, India, and Nigeria," International Journal of Economics and Financial Issues, Econjournals, vol. 13(6), pages 91-100, November.
    2. Mei-yin Lin, 2023. "The impacts of cryptocurrency shocks on emerging market currencies: evidence from quantile regression," Economics Bulletin, AccessEcon, vol. 43(4), pages 1875-1886.
    3. Ghaemi Asl, Mahdi & Raheem, Ibrahim D. & Rashidi, Muhammad Mahdi, 2023. "Do stochastic risks flow between industrial and precious metals, Islamic stocks, green bonds, green stocks, clean investments, major foreign exchange rates, and Bitcoin?," Resources Policy, Elsevier, vol. 86(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Ahmed H. Elsayed & Giray Gozgor & Chi Keung Marco Lau, 2022. "Causality and dynamic spillovers among cryptocurrencies and currency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2026-2040, April.
    5. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Jiang, Yonghong & Lie, Jiayi & Wang, Jieru & Mu, Jinqi, 2021. "Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective," Economic Modelling, Elsevier, vol. 95(C), pages 21-34.
    7. Huynh, Toan Luu Duc & Hille, Erik & Nasir, Muhammad Ali, 2020. "Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    8. Ha, Le Thanh & Nham, Nguyen Thi Hong, 2022. "An application of a TVP-VAR extended joint connected approach to explore connectedness between WTI crude oil, gold, stock and cryptocurrencies during the COVID-19 health crisis," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    9. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    10. Maurice Omane-Adjepong & Imhotep Paul Alagidede, 2020. "Dynamic Linkages and Economic Role of Leading Cryptocurrencies in an Emerging Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 537-585, December.
    11. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    12. Raza, Syed Ali & Ahmed, Maiyra & Aloui, Chaker, 2022. "On the asymmetrical connectedness between cryptocurrencies and foreign exchange markets: Evidence from the nonparametric quantile on quantile approach," Research in International Business and Finance, Elsevier, vol. 61(C).
    13. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    14. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    15. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    16. Kumah, Seyram Pearl & Odei-Mensah, Jones, 2021. "Are Cryptocurrencies and African stock markets integrated?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 330-341.
    17. Kinkyo, Takuji, 2022. "The intermediating role of the Chinese renminbi in Asian currency markets: Evidence from partial wavelet coherence," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    18. Khaled Mokni & Elie Bouri & Ahdi Noomen Ajmi & Xuan Vinh Vo, 2021. "Does Bitcoin Hedge Categorical Economic Uncertainty? A Quantile Analysis," SAGE Open, , vol. 11(2), pages 21582440211, May.
    19. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    20. Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Kang, Sang Hoon, 2019. "Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:27:y:2022:i:2:p:1769-1784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.