IDEAS home Printed from https://ideas.repec.org/a/wly/iecrev/v64y2023i3p1075-1086.html
   My bibliography  Save this article

Goodhart'S Law And Machine Learning: A Structural Perspective

Author

Listed:
  • Christopher A. Hennessy
  • Charles A. E. Goodhart

Abstract

We develop a simple structural model to illustrate how penalized regressions generate Goodhart bias when training data are clean but covariates are manipulated at known cost by future agents. With quadratic (extremely steep) manipulation costs, bias is proportional to Ridge (Lasso) penalization. If costs depend on absolute or percentage manipulation, the following algorithm yields manipulation‐proof prediction: Within training data, evaluate candidate coefficients at their respective incentive‐compatible manipulation configuration. We derive analytical coefficient adjustments: slopes (intercept) shift downward if costs depend on percentage (absolute) manipulation. Statisticians ignoring manipulation costs select socially suboptimal penalization. Model averaging reduces these manipulation costs.

Suggested Citation

  • Christopher A. Hennessy & Charles A. E. Goodhart, 2023. "Goodhart'S Law And Machine Learning: A Structural Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1075-1086, August.
  • Handle: RePEc:wly:iecrev:v:64:y:2023:i:3:p:1075-1086
    DOI: 10.1111/iere.12633
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/iere.12633
    Download Restriction: no

    File URL: https://libkey.io/10.1111/iere.12633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alex Frankel & Navin Kartik, 2022. "Improving Information from Manipulable Data," Journal of the European Economic Association, European Economic Association, vol. 20(1), pages 79-115.
    2. Ian Ball, 2019. "Scoring Strategic Agents," Papers 1909.01888, arXiv.org, revised May 2024.
    3. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa N. Gibbs & Benedict Guttman-Kenney & Donghoon Lee & Scott Nelson & Wilbert Van der Klaauw & Jialan Wang, 2024. "Consumer Credit Reporting Data," Staff Reports 1114, Federal Reserve Bank of New York.
    2. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    3. Frederico Belo & Chen Xue & Lu Zhang, 2010. "Cross-sectional Tobin's Q," NBER Working Papers 16336, National Bureau of Economic Research, Inc.
    4. Hwang, Chiun-Lin, 1989. "Optimal monetary policy in an open macroeconomic model with rational expectation," ISU General Staff Papers 1989010108000010197, Iowa State University, Department of Economics.
    5. Yariv, Leeat & Jackson, Matthew O., 2018. "The Non-Existence of Representative Agents," CEPR Discussion Papers 13397, C.E.P.R. Discussion Papers.
    6. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    7. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    8. Dessein, Wouter & Frankel, Alexander & Kartik, Navin, 2023. "Test-Optional Admissions," CEPR Discussion Papers 18090, C.E.P.R. Discussion Papers.
    9. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    10. Stefan Laséen & Andrea Pescatori, 2020. "Financial stability and interest‐rate policy: A quantitative assessment of costs and benefit," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(3), pages 1246-1273, August.
    11. Zsolt Darvas, 2013. "Monetary transmission in three central European economies: evidence from time-varying coefficient vector autoregressions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(2), pages 363-390, May.
    12. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    13. Marçal, Emerson Fernandes & Cunha, Ronan & Merlin, Giovanni Tondin & Simões, Oscar, 2017. "The aftermath of 2008 turmoil on Brazilian economy: Tsunami or “Marolinha”?," Textos para discussão 459, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    14. G. Menzies & R. Bird & P. Dixon & M. Rimmer, 2010. "Asset Price Regulators, Unite: you have Macroeconomic Stability to Win and the Microeconomic Losses are Second-order," Centre of Policy Studies/IMPACT Centre Working Papers g-205, Victoria University, Centre of Policy Studies/IMPACT Centre.
    15. Takamitsu Kurita, 2007. "A dynamic econometric system for the real yen–dollar rate," Empirical Economics, Springer, vol. 33(1), pages 115-149, July.
    16. Yingkai Li & Boli Xu, 2024. "Falsifiable Test Design in Coordination Games," Papers 2405.18521, arXiv.org.
    17. Donald L. Kohn, 2008. "Lessons for central bankers from a Phillips curve framework," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    18. Ariane Szafarz, 2015. "Market Efficiency and Crises:Don’t Throw the Baby out with the Bathwater," Bankers, Markets & Investors, ESKA Publishing, issue 139, pages 20-26, November-.
    19. Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Eyal Argov & Emanuel Barnea & Alon Binyamini & Eliezer Borenstein & David Elkayam & Irit Rozenshtrom, 2012. "MOISE: A DSGE Model for the Israeli Economy," Bank of Israel Working Papers 2012.06, Bank of Israel.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:iecrev:v:64:y:2023:i:3:p:1075-1086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.