IDEAS home Printed from https://ideas.repec.org/a/wly/iecrev/v54y2013i4p1309-1328.html
   My bibliography  Save this article

Inference For Dominance Relations

Author

Listed:
  • CHRISTOPHER J. BENNETT

Abstract

The use of partial orders has been popularized as a way to conduct social evaluations using only minimal normative assumptions. Generically, this process involves comparing continuously indexed curves that are uniquely determined by the cumulative distributions of the individual attributes under study. In the literature on income poverty and inequality, for example, pairwise comparisons of entire income distributions and their respective Lorenz curves are routinely performed in order to characterize rankings of poverty, inequality, and welfare. In this article, we focus on the inferential problem that arises whenever such comparisons are made in the absence of census data. Statistical inference in these situations is particularly complex due to the fact that comparing curves invariably gives rise to four possibilities: the true population curves are equal, the first curve lies below the second, the second lies below the first, or the curves cross. To address this four‐decision problem, we introduce a two‐stage test that has good power and fine control over misclassification error rates.

Suggested Citation

  • Christopher J. Bennett, 2013. "Inference For Dominance Relations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(4), pages 1309-1328, November.
  • Handle: RePEc:wly:iecrev:v:54:y:2013:i:4:p:1309-1328
    DOI: 10.1111/iere.12038
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/iere.12038
    Download Restriction: no

    File URL: https://libkey.io/10.1111/iere.12038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Knight & Stephen Satchell, 2008. "Testing for infinite order stochastic dominance with applications to finance, risk and income inequality," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 32(1), pages 35-46, January.
    2. Valentino Dardanoni & Antonio Forcina, 1999. "Inference for Lorenz curve orderings," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 49-75.
    3. Garry F. Barrett & Stephen G. Donald & Debopam Bhattacharya, 2014. "Consistent Nonparametric Tests for Lorenz Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 1-13, January.
    4. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    5. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    6. Schechtman, Edna & Shelef, Amit & Yitzhaki, Shlomo & Zitikis, Ričardas, 2008. "Testing Hypotheses About Absolute Concentration Curves And Marginal Conditional Stochastic Dominance," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1044-1062, August.
    7. Stephen G. Donald & Yu‐Chin Hsu & Garry F. Barrett, 2012. "Incorporating covariates in the measurement of welfare and inequality: methods and applications," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 1-30, February.
    8. Kodde, David A & Palm, Franz C, 1986. "Wald Criteria for Jointly Testing Equality and Inequality Restriction s," Econometrica, Econometric Society, vol. 54(5), pages 1243-1248, September.
    9. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    10. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521405515, January.
    11. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    12. Wolak, Frank A., 1989. "Local and Global Testing of Linear and Nonlinear Inequality Constraints in Nonlinear Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(1), pages 1-35, April.
    13. Wolak, Frank A, 1991. "The Local Nature of Hypothesis Tests Involving Inequality Constraints in Nonlinear Models," Econometrica, Econometric Society, vol. 59(4), pages 981-995, July.
    14. Wolak, Frank A., 1989. "Testing inequality constraints in linear econometric models," Journal of Econometrics, Elsevier, vol. 41(2), pages 205-235, June.
    15. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    16. Horvath, Lajos & Kokoszka, Piotr & Zitikis, Ricardas, 2006. "Testing for stochastic dominance using the weighted McFadden-type statistic," Journal of Econometrics, Elsevier, vol. 133(1), pages 191-205, July.
    17. Bhattacharya, Debopam, 2007. "Inference on inequality from household survey data," Journal of Econometrics, Elsevier, vol. 137(2), pages 674-707, April.
    18. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    19. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angel G. Angelov & Magnus Ekström, 2023. "Tests of stochastic dominance with repeated measurements data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 443-467, September.
    2. Mariusz Górajski & Zbigniew Kuchta, 2022. "Which hallmarks of optimal monetary policy rules matter in Poland? A stochastic dominance approach," Bank i Kredyt, Narodowy Bank Polski, vol. 53(2), pages 149-182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J. Bennett, 2009. "Consistent and Asymptotically Unbiased MinP Tests of Multiple Inequality Moment Restrictions," Vanderbilt University Department of Economics Working Papers 0908, Vanderbilt University Department of Economics.
    2. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    3. Stengos, Thanasis & Thompson, Brennan S., 2012. "Testing for bivariate stochastic dominance using inequality restrictions," Economics Letters, Elsevier, vol. 115(1), pages 60-62.
    4. Francesco Andreoli, 2018. "Robust Inference for Inverse Stochastic Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 146-159, January.
    5. David Lander & David Gunawan & William Griffiths & Duangkamon Chotikapanich, 2020. "Bayesian assessment of Lorenz and stochastic dominance," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 767-799, May.
    6. Kuan Xu & Gordon Fisher, 2006. "Myopic loss aversion and margin of safety: the risk of value investing," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 481-494.
    7. Le-Yu Chen & Jerzy Szroeter, 2009. "Hypothesis testing of multiple inequalities: the method of constraint chaining," CeMMAP working papers CWP13/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. David Lander & David Gunawan & William E. Griffiths & Duangkamon Chotikapanich, 2016. "Bayesian Assessment of Lorenz and Stochastic Dominance Using a Mixture of Gamma Densities," Department of Economics - Working Papers Series 2023, The University of Melbourne.
    9. Andrews, Donald W.K. & Shi, Xiaoxia, 2017. "Inference based on many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 196(2), pages 275-287.
    10. Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
    11. Satya P. DAS & Chetan CHATE, 2001. "Endogenous Distribution, Politics, and Growth," LIDAM Discussion Papers IRES 2001019, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    12. Stephen G. Donald & Yu‐Chin Hsu & Garry F. Barrett, 2012. "Incorporating covariates in the measurement of welfare and inequality: methods and applications," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 1-30, February.
    13. Martin Huber & Giovanni Mellace, 2015. "Testing Instrument Validity for LATE Identification Based on Inequality Moment Constraints," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 398-411, May.
    14. Hongyi Jiang & Zhenting Sun & Shiyun Hu, 2023. "A Nonparametric Test of $m$th-degree Inverse Stochastic Dominance," Papers 2306.12271, arXiv.org, revised Jul 2023.
    15. DENUIT, Michel & SAILLET, Olivier, 2001. "Nonparametric Tests for Positive Quadrant Dependence," LIDAM Discussion Papers IRES 2001009, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES), revised 01 Apr 2001.
    16. Ng, Pin & Wong, Wing-Keung & Xiao, Zhijie, 2017. "Stochastic dominance via quantile regression with applications to investigate arbitrage opportunity and market efficiency," European Journal of Operational Research, Elsevier, vol. 261(2), pages 666-678.
    17. Chuang, O-Chia & Kuan, Chung-Ming & Tzeng, Larry Y., 2017. "Testing for central dominance: Method and application," Journal of Econometrics, Elsevier, vol. 196(2), pages 368-378.
    18. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    19. Maasoumi, Esfandiar & Almas Heshmati, 2003. "Evaluating Dominance Ranking of PSID Incomes by various Household Attributes," Departmental Working Papers 0509, Southern Methodist University, Department of Economics.
    20. Driessen, Joost & Melenberg, Bertrand & Nijman, Theo, 2005. "Testing affine term structure models in case of transaction costs," Journal of Econometrics, Elsevier, vol. 126(1), pages 201-232, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:iecrev:v:54:y:2013:i:4:p:1309-1328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.