IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v8y2018i2p366-378.html
   My bibliography  Save this article

Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete

Author

Listed:
  • Ä°rem Åžanal

Abstract

The environmental impact of concrete has become a significant matter of interest because many ready†mix concrete producers are now requiring sustainability. Carbon dioxide (CO2) emissions are often used as an evaluation parameter to identify the environmental impacts of concrete production. However, there are very few reliable estimates available for the practical determination of CO2 emissions in terms of all concrete constituents at concrete production stage. The aim of this study is therefore to provide data collected from raw†material manufacturers and ready†mix concrete plants so that practical estimates can be made for CO2 emissions and resulting environmental impacts. Results will be evaluated in terms of raw materials, production, and transportation, in order to identify the potentially significant sources of CO2 emissions. Emission results from the concrete production with ordinary Portland cement, blended cement and cement replacement with fly ash and slag were also examined, in order to gain further understanding of their efficiency in reducing CO2 emissions. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
  • Handle: RePEc:wly:greenh:v:8:y:2018:i:2:p:366-378
    DOI: 10.1002/ghg.1748
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1748
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Junghoon & Tae, Sungho & Kim, Taehyung, 2012. "Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2940-2946.
    2. Taehyoung Kim & Chang U. Chae, 2016. "Evaluation Analysis of the CO 2 Emission and Absorption Life Cycle for Precast Concrete in Korea," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    3. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae Hyoung Kim & Chang U Chae & Gil Hwan Kim & Hyoung Jae Jang, 2016. "Analysis of CO 2 Emission Characteristics of Concrete Used at Construction Sites," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    2. Jozef Švajlenka & Mária Kozlovská, 2020. "Analysis of the Energy Balance of Constructions Based on Wood during Their Use in Connection with CO 2 Emissions," Energies, MDPI, vol. 13(18), pages 1-16, September.
    3. Wang, JingJing & Wang, YuanFeng & Sun, YiWen & Tingley, Danielle Densley & Zhang, YuRong, 2017. "Life cycle sustainability assessment of fly ash concrete structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1162-1174.
    4. Golden Odey & Bashir Adelodun & Sang-Hyun Kim & Kyung-Sook Choi, 2021. "Status of Environmental Life Cycle Assessment (LCA): A Case Study of South Korea," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    5. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    6. Anne Ventura & Van‐Loc Ta & Tristan Senga Kiessé & Stéphanie Bonnet, 2021. "Design of concrete : Setting a new basis for improving both durability and environmental performance," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 233-247, February.
    7. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    8. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    9. Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
    10. Michele Fioretti, 2022. "Caring or Pretending to Care? Social Impact, Firms' Objectives, and Welfare (former title: Social Responsibility and Firm's Objectives)," SciencePo Working papers hal-03393065, HAL.
    11. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    12. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    13. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    14. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    15. Fan Dai & Ling Xiong & Ding Ma, 2017. "How to Set the Allowance Benchmarking for Cement Industry in China’s Carbon Market: Marginal Analysis and the Case of the Hubei Emission Trading Pilot," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    16. Seunghyun Son & Dongjoo Lee & Jinhyuk Oh & Sunkuk Kim, 2021. "Embodied CO 2 Reduction Effects of Free-Form Concrete Panel Production Using Rod-Type Molds with 3D Plastering Technique," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    17. Dincbas, Tugba & Ergeneli, Azize & Yigitbasioglu, Hakan, 2021. "Clean technology adoption in the context of climate change: Application in the mineral products industry," Technology in Society, Elsevier, vol. 64(C).
    18. Seunguk Na & Inkwan Paik, 2019. "Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    19. Luo, Zongwei & Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Hazen, Benjamin & Roubaud, David, 2017. "Sustainable production framework for cement manufacturing firms: A behavioural perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 495-502.
    20. Joowook Kim & Jemin Myoung & Hyunwoo Lim & Doosam Song, 2020. "Efficiency Gap Caused by the Input Data in Evaluating Energy Efficiency of Low-Income Households’ Energy Retrofit Program," Sustainability, MDPI, vol. 12(7), pages 1-11, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:8:y:2018:i:2:p:366-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.