IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v6y2016i3p352-369.html
   My bibliography  Save this article

Time‐lapse application of pressure transient analysis for monitoring compressible fluid leakage

Author

Listed:
  • Seyyed A. Hosseini
  • Masoud Alfi

Abstract

Detecting early leakage of gaseous fluids from deep formations into shallower formations has financial and environmental implications and could potentially save commercial projects from expensive remediation. Detection of CO 2 leakage in the context of CO 2 geological storage and methane leakage at hydraulic‐fracturing sites is a possible scenario in which the approach described herein could be used. Any vertical leakage from a deep formation will most likely start with brine leakage, followed by arrival of the gaseous phase at the leakage pathway (faults, plugged and abandoned wells, fractures, etc.). We apply well‐known pressure transient analysis (PTA) techniques to solving challenges related to leakage monitoring, including distinguishing between brine and gaseous‐phase leakage and detecting leaks that may occur over a long period of time. The latter development is important because small leaks may not be detected by simple monitoring of absolute change in pressure. The proposed analysis is based on time‐lapse measurement of monitoring‐zone storativity (or total compressibility), and without loss of generality, we apply our analysis to CO 2 leakage scenarios. Our numerical results suggest that if well‐known PTA techniques are used, CO 2 leaks can be detected, allowing the volume of leaked CO 2 into the monitoring zone to be estimated. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Seyyed A. Hosseini & Masoud Alfi, 2016. "Time‐lapse application of pressure transient analysis for monitoring compressible fluid leakage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 352-369, June.
  • Handle: RePEc:wly:greenh:v:6:y:2016:i:3:p:352-369
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1570
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arts, R. & Eiken, O. & Chadwick, A. & Zweigel, P. & van der Meer, L. & Zinszner, B., 2004. "Monitoring of CO2 injected at Sleipner using time-lapse seismic data," Energy, Elsevier, vol. 29(9), pages 1383-1392.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    2. R. Andrew Chadwick & David J. Noy, 2015. "Underground CO2 storage: demonstrating regulatory conformance by convergence of history‐matched modeled and observed CO2 plume behavior using Sleipner time‐lapse seismics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 305-322, June.
    3. Kolditz, O. & Bauer, S. & Böttcher, N. & Elsworth, D. & Görke, U.-J. & McDermott, C.-I. & Park, C.-H. & Singh, A.K. & Taron, J. & Wang, W., 2012. "Numerical simulation of two-phase flow in deformable porous media: Application to carbon dioxide storage in the subsurface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(10), pages 1919-1935.
    4. Zhong, Jinjin & Jiang, Xi, 2017. "A case study of using cosmic ray muons to monitor supercritical CO2 migration in geological formations," Applied Energy, Elsevier, vol. 185(P2), pages 1450-1458.
    5. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    6. Hou, Lei & Elsworth, Derek & Zhang, Lei & Gong, Peibin & Liu, Honglei, 2024. "Recalibration of CO2 storage in shale: prospective and contingent storage resources, and capacity," Energy, Elsevier, vol. 290(C).
    7. Jie Li & Zhonghe Pang, 2015. "Environmental isotopes in CO 2 geological sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 374-388, August.
    8. Masoud Ahmadinia & Seyed M. Shariatipour, 2020. "Analysing the role of caprock morphology on history matching of Sleipner CO2 plume using an optimisation method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1077-1097, October.
    9. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    10. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    11. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
    12. Ariesty R. K. Asikin & Awali Priyono & Tutuka Ariadji & Benyamin Sapiie & Mohammad R. Sule & Takeshi Tsuji & Wawan Gunawan A. Kadir & Toshifumi Matsuoka & Sigit Rahardjo, 2018. "Forward Modeling Time-Lapse Seismic based on Reservoir Simulation Result on The CCS Project at Gundih Field, Indonesia," Modern Applied Science, Canadian Center of Science and Education, vol. 12(1), pages 1-75, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:6:y:2016:i:3:p:352-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.