IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v35y2024i1ne2825.html
   My bibliography  Save this article

Estimation of change with partially overlapping and spatially balanced samples

Author

Listed:
  • Xin Zhao
  • Anton Grafström

Abstract

Spatially balanced samples are samples that are well‐spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well‐spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.

Suggested Citation

  • Xin Zhao & Anton Grafström, 2024. "Estimation of change with partially overlapping and spatially balanced samples," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
  • Handle: RePEc:wly:envmet:v:35:y:2024:i:1:n:e2825
    DOI: 10.1002/env.2825
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2825
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. G. Berger & R. Priam, 2016. "A simple variance estimator of change for rotating repeated surveys: an application to the European Union Statistics on Income and Living Conditions household surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 251-272, January.
    2. Anton Grafström & Lina Schelin, 2014. "How to Select Representative Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 277-290, June.
    3. Karine Hagesæther Foss & Gunhild Elisabeth Berget & Jo Eidsvik, 2022. "Using an autonomous underwater vehicle with onboard stochastic advection‐diffusion models to map excursion sets of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    4. Zhonglei Wang & Zhengyuan Zhu, 2019. "Spatiotemporal Balanced Sampling Design for Longitudinal Area Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 245-263, June.
    5. Anton Grafström & Niklas L. P. Lundström & Lina Schelin, 2012. "Spatially Balanced Sampling through the Pivotal Method," Biometrics, The International Biometric Society, vol. 68(2), pages 514-520, June.
    6. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    7. Stevens, Don L. & Olsen, Anthony R., 2004. "Spatially Balanced Sampling of Natural Resources," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 262-278, January.
    8. Yves Berger, 2004. "A Simple Variance Estimator for Unequal Probability Sampling without Replacement," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(3), pages 305-315.
    9. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    2. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    3. Linda Altieri & Daniela Cocchi, 2021. "Spatial Sampling for Non‐compact Patterns," International Statistical Review, International Statistical Institute, vol. 89(3), pages 532-549, December.
    4. Robertson, Blair & Price, Chris, 2024. "One point per cluster spatially balanced sampling," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    5. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    6. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    7. Huan Xie & Fang Wang & Yali Gong & Xiaohua Tong & Yanmin Jin & Ang Zhao & Chao Wei & Xinyi Zhang & Shicheng Liao, 2022. "Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    8. B. L. Robertson & O. Ozturk & O. Kravchuk & J. A. Brown, 2022. "Spatially Balanced Sampling with Local Ranking," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 622-639, December.
    9. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    10. Zhonglei Wang & Zhengyuan Zhu, 2019. "Spatiotemporal Balanced Sampling Design for Longitudinal Area Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 245-263, June.
    11. Lorenzo Fattorini & Timothy G. Gregoire & Sara Trentini, 2018. "The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 358-373, September.
    12. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    13. Robertson, B.L. & McDonald, T. & Price, C.J. & Brown, J.A., 2017. "A modification of balanced acceptance sampling," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 107-112.
    14. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    15. ak Tomasz B, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Statistics Poland, vol. 22(2), pages 143-154, June.
    16. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    17. Pommerening, Arne & Szmyt, Janusz & Zhang, Gongqiao, 2020. "A new nearest-neighbour index for monitoring spatial size diversity: The hyperbolic tangent index," Ecological Modelling, Elsevier, vol. 435(C).
    18. Sara Franceschi & Rosa Maria Di Biase & Agnese Marcelli & Lorenzo Fattorini, 2022. "Some Empirical Results on Nearest-Neighbour Pseudo-populations for Resampling from Spatial Populations," Stats, MDPI, vol. 5(2), pages 1-16, April.
    19. Jacopo Paglia & Jo Eidsvik & Juha Karvanen, 2022. "Efficient spatial designs using Hausdorff distances and Bayesian optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1060-1084, September.
    20. Cindy L. Yu & Jie Li & Michael G. Karl & Todd J. Krueger, 2020. "Obtaining a Balanced Area Sample for the Bureau of Land Management Rangeland Survey," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 250-275, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:1:n:e2825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.