Author
Listed:
- Rong Huang
- Murugappa (Murgie) Krishnan
- John Shon
- Ping Zhou
Abstract
We develop parametric estimates of the imitation†driven herding propensity of analysts and their earnings forecasts. By invoking rational expectations, we solve an explicit analyst optimization problem and estimate herding propensity using two measures: First, we estimate analysts’ posterior beliefs using actual earnings plus a realization drawn from a mean†zero normal distribution. Second, we estimate herding propensity without seeding a random error, and allow for nonorthogonal information signals. In doing so, we avoid using the analyst's prior forecast as the proxy for his posterior beliefs, which is a traditional criticism in the literature. We find that more than 60 percent of analysts herd toward the prevailing consensus, and herding propensity is associated with various economic factors. We also validate our herding propensity measure by confirming its predictive power in explaining the cross†sectional variation in analysts’ out†of†sample herding behavior and forecast accuracy. Finally, we find that forecasts adjusted for analysts’ herding propensity are less biased than the raw forecasts. This adjustment formula can help researchers and investors obtain better proxies for analysts’ unbiased earnings forecasts.Les auteurs élaborent des estimations paramétriques de la propension au ralliement (grégarisme) induite par l'imitation que manifestent les analystes et leurs prévisions de résultats. En recourant aux attentes rationnelles, ils résolvent un problème explicite d'optimisation avec lequel doit composer l'analyste et estiment la propension au ralliement à l'aide de deux mesures : en premier lieu, ils estiment les opinions a posteriori des analystes en utilisant les résultats réels ainsi qu'une réalisation tirée d'une distribution normale à moyenne zéro; en second lieu, ils estiment la propension au ralliement sans introduire d'erreur aléatoire, en permettant les signaux d'information non orthogonaux. Ce faisant, ils évitent le recours généralement critiqué à la prévision précédente de l'analyste à titre de variable de substitution à ses opinions a posteriori. Les auteurs constatent que plus de 60 pour cent des analystes se rallient au consensus existant, et que la propension au ralliement est associée à divers facteurs économiques. Ils valident également leur mesure de la propension au ralliement en confirmant son pouvoir prédictif dans l'explication de la variation transversale du comportement de ralliement hors échantillon des analystes et de l'exactitude de leurs prévisions. Enfin, les auteurs constatent que les prévisions ajustées pour tenir compte de la propension des analystes au ralliement sont moins biaisées que les prévisions brutes. Cette forme d'ajustement est susceptible d'aider les chercheurs et les investisseurs à obtenir de meilleures variables de substitution aux prévisions de résultats non biaisées des analystes.
Suggested Citation
Rong Huang & Murugappa (Murgie) Krishnan & John Shon & Ping Zhou, 2017.
"Who Herds? Who Doesn't? Estimates of Analysts’ Herding Propensity in Forecasting Earnings,"
Contemporary Accounting Research, John Wiley & Sons, vol. 34(1), pages 374-399, March.
Handle:
RePEc:wly:coacre:v:34:y:2017:i:1:p:374-399
DOI: 10.1111/1911-3846.12236
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022.
"Do expert experience and characteristics affect inflation forecasts?,"
Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.
- Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2020.
"Do Expert Experience and Characteristics Affect Inflation Forecasts?,"
CFDS Discussion Paper Series
2020/6, Center for Financial Development and Stability at Henan University, Kaifeng, Henan, China.
- Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2020.
"Do Expert Experience and Characteristics Affect Inflation Forecasts?,"
Bank of Israel Working Papers
2020.11, Bank of Israel.
- Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2022.
"Do expert experience and characteristics affect inflation forecasts?,"
Post-Print
emse-04624966, HAL.
- Young‐Soo Choi & Svetlana Mira & Nicholas Taylor, 2022.
"Local versus foreign analysts' forecast accuracy: does herding matter?,"
Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1143-1188, April.
- Guo, Yongzhen & Wang, Yinghuan, 2024.
"It is a small world: The effect of analyst-media school ties on analyst performance,"
International Review of Financial Analysis, Elsevier, vol. 94(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:coacre:v:34:y:2017:i:1:p:374-399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1911-3846 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.