IDEAS home Printed from https://ideas.repec.org/a/wly/coacre/v13y1996i2p379-399.html
   My bibliography  Save this article

What Affects Individuals' Decisions to Acquire Forecasted Information?

Author

Listed:
  • LUCY F. ACKERT
  • BRYAN K. CHURCH
  • MOHAMED SHEHATA

Abstract

. Individuals may acquire forecasted information because forecasters (e.g., analysts) possess superior information, superior forecasting abilities, or both. We conduct a series of experimental sessions to investigate individuals' information acquisition decisions. In our experimental setting, individuals are able to acquire unprocessed information (which is analogous to that used by analysts), processed information (which is analogous to that produced by analysts), or both. We examine the effects of forecast bias and economic stability on the type of information acquired. Our results suggest that individuals are less inclined to acquire unprocessed information as economic stability decreases. Under conditions of economic instability, they are more inclined to acquire processed information, and processed and unprocessed information combined. Forecast bias, on the other hand, does not affect individuals' information acquisition decisions. Individuals appear to recognize the optimism contained in biased forecasts and attempt to adjust for such biases. Our results also suggest that individuals can more effectively use processed information than unprocessed information, regardless of the degree of forecast bias. Our overall findings suggest that individuals acquire forecasts because forecasters are perceived to have superior (processing) abilities. Lastly, our results suggest that in using information individuals are prone to make pessimistic predictions. Résumé. Les particuliers ont accès à de l'information prévisionnelle grâce aux prévisionnistes (les analystes, par exemple) qui possédent de l'information de qualité supérieure, des capacités prévisionnelles plus grandes ou les deux. Les auteurs ont procédé à une série de séances expérimentales visant à étudier les décisions d'acquisition d'information des particuliers. Selon le plan d'expérience de l'étude, les particuliers ont la possibilité d'acquérir de l'information non traitée (analogue à celle qu'utilisent les analystes), de l'information traitée (analogue à celle que produisent les analystes) ou les deux. Les auteurs étudient les conséquences des distorsions prévisionnelles et de la stabilité économique sur la nature de l'information acquise. Les résultats obtenus donnent à penser que les particuliers sont moins enclins à acquérir de l'information non traitée lorsque la stabilité économique s'effrite. En situation d'instabilité économique, ils sont davantage enclins à acquérir de l'information traitée et une combinaison d'information traitée et non traitée. La distorsion prévisionnelle, d'autre part, n'a pas d'incidence sur les décisions d'acquisition d'information des particuliers. Ces derniers semblent déceler l'optimisme que contiennent les prévisions affectées par la distorsion et tentent d'ajuster leur interprétation pour tenir compte de cette distorsion. Les constatations des auteurs laissent également supposer que les particuliers peuvent utiliser à meilleur escient l'information traitée que l'information non traitée, peu importe le degré de distorsion prévisionnelle. Dans l'ensemble, leurs conclusions suggèrent que les particuliers font l'acquisition d'information prévisionnelle parce qu'ils considèrent que les prévisionnistes possèdent des compétences (celles de traiter l'information) supérieures aux leurs. En dernier lieu, les résultats obtenus par les auteurs révèlent que les particuliers, lorsqu'ils utilisent l'information qu'ils ont acquise, ont tendance à formuler des prévisions pessimistes.

Suggested Citation

  • Lucy F. Ackert & Bryan K. Church & Mohamed Shehata, 1996. "What Affects Individuals' Decisions to Acquire Forecasted Information?," Contemporary Accounting Research, John Wiley & Sons, vol. 13(2), pages 379-399, September.
  • Handle: RePEc:wly:coacre:v:13:y:1996:i:2:p:379-399
    DOI: 10.1111/j.1911-3846.1996.tb00507.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1911-3846.1996.tb00507.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1911-3846.1996.tb00507.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amitabh Dugar & Siva Nathan, 1995. "The Effect of Investment Banking Relationships on Financial Analysts' Earnings Forecasts and Investment Recommendations," Contemporary Accounting Research, John Wiley & Sons, vol. 12(1), pages 131-160, September.
    2. Bouwman, Marinus J., 1984. "Expert vs novice decision making in accounting: A summary," Accounting, Organizations and Society, Elsevier, vol. 9(3-4), pages 325-327, October.
    3. Imhoff, Ea & Lobo, Gj, 1984. "Information-Content Of Analysts Composite Forecast Revisions," Journal of Accounting Research, Wiley Blackwell, vol. 22(2), pages 541-554.
    4. Williams, Arlington W, 1987. "The Formation of Price Forecasts in Experimental Markets," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 19(1), pages 1-18, February.
    5. De Bondt, Werner F M & Thaler, Richard H, 1990. "Do Security Analysts Overreact?," American Economic Review, American Economic Association, vol. 80(2), pages 52-57, May.
    6. Abarbanell, Jeffery S., 1991. "Do analysts' earnings forecasts incorporate information in prior stock price changes?," Journal of Accounting and Economics, Elsevier, vol. 14(2), pages 147-165, June.
    7. Lys, Thomas & Sohn, Sungkyu, 1990. "The association between revisions of financial analysts' earnings forecasts and security-price changes," Journal of Accounting and Economics, Elsevier, vol. 13(4), pages 341-363, December.
    8. Anderson, Matthew J., 1988. "A comparative analysis of information search and evaluation behavior of professional and non-professional financial analysts," Accounting, Organizations and Society, Elsevier, vol. 13(5), pages 431-446, August.
    9. Brown, Lawrence D. & Hagerman, Robert L. & Griffin, Paul A. & Zmijewski, Mark E., 1987. "Security analyst superiority relative to univariate time-series models in forecasting quarterly earnings," Journal of Accounting and Economics, Elsevier, vol. 9(1), pages 61-87, April.
    10. John Affleck†Graves & Larry R. Davis & Richard R. Mendenhall, 1990. "Forecasts of earnings per share: Possible sources of analyst superiority and bias," Contemporary Accounting Research, John Wiley & Sons, vol. 6(2), pages 501-517, March.
    11. Figlewski, Stephen & Wachtel, Paul, 1981. "The Formation of Inflationary Expectations," The Review of Economics and Statistics, MIT Press, vol. 63(1), pages 1-10, February.
    12. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    13. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    14. Francis, J & Philbrick, D, 1993. "Analysts Decisions As Products Of A Multitask Environment," Journal of Accounting Research, Wiley Blackwell, vol. 31(2), pages 216-230.
    15. Godfrey, Leslie G., 1978. "Testing for multiplicative heteroskedasticity," Journal of Econometrics, Elsevier, vol. 8(2), pages 227-236, October.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerrit Sarens & Giuseppe D’Onza, 2017. "The perception of financial analysts on risk, risk management, and internal control disclosure: Evidence from Belgium and Italy," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 14(2), pages 118-138, May.
    2. Ackert, Lucy F. & Church, Bryan K. & Zhang, Ping, 2004. "Asset prices and informed traders' abilities: Evidence from experimental asset markets," Accounting, Organizations and Society, Elsevier, vol. 29(7), pages 609-626, October.
    3. El-Hussein E. El-Masry, 2008. "Factors affecting auditors' utilization of evidential cues," Managerial Auditing Journal, Emerald Group Publishing, vol. 23(1), pages 26-50, January.
    4. Lucy F. Ackert & Bryan K. Church & Ping Zhang, 1999. "The effect of forecast bias on market behavior: evidence from experimental asset markets," FRB Atlanta Working Paper 99-4, Federal Reserve Bank of Atlanta.
    5. Orens, Raf & Lybaert, Nadine, 2007. "Does the financial analysts' usage of non-financial information influence the analysts' forecast accuracy? Some evidence from the Belgian sell-side financial analyst," The International Journal of Accounting, Elsevier, vol. 42(3), pages 237-271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amitabh Dugar & Siva Nathan, 1995. "The Effect of Investment Banking Relationships on Financial Analysts' Earnings Forecasts and Investment Recommendations," Contemporary Accounting Research, John Wiley & Sons, vol. 12(1), pages 131-160, September.
    2. Beyer, Anne & Cohen, Daniel A. & Lys, Thomas Z. & Walther, Beverly R., 2010. "The financial reporting environment: Review of the recent literature," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 296-343, December.
    3. K. C. Kenneth Chu & W. H. Sophia Zhai, 2021. "Distress risk puzzle and analyst forecast optimism," Review of Quantitative Finance and Accounting, Springer, vol. 57(2), pages 429-460, August.
    4. Russell, Bill & Chowdhury, Rosen Azad, 2013. "Estimating United States Phillips curves with expectations consistent with the statistical process of inflation," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 24-38.
    5. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    6. Reza Espahbodi & Amitabh Dugar & Hassan Tehranian, 2001. "Further evidence on optimism and underreaction in analysts' forecasts," Review of Financial Economics, John Wiley & Sons, vol. 10(1), pages 1-21, March.
    7. Charles G. Ham & Zachary R. Kaplan & Zawadi R. Lemayian, 2022. "Rationalizing forecast inefficiency," Review of Accounting Studies, Springer, vol. 27(1), pages 313-343, March.
    8. Kothari, S. P., 2001. "Capital markets research in accounting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 105-231, September.
    9. Sandrine LARDIC & Karine MICHALON & François DOSSOU, 2008. "Can earnings forecasts be improved by taking into account the forecast bias?," Economics Bulletin, AccessEcon, vol. 7(11), pages 1-20.
    10. Chahine, Salim, 2004. "Long-run abnormal return after IPOs and optimistic analysts' forecasts," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 83-103.
    11. Khimich, Natalya, 2017. "A comparison of alternative cash flow and discount rate news proxies," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 31-52.
    12. Lucy F. Ackert & Bryan K. Church, 1998. "The effects of subject pool and design experience on rationality in experimental asset markets," FRB Atlanta Working Paper 98-18, Federal Reserve Bank of Atlanta.
    13. Brown, Philip & Clarke, Alex & How, Janice C. Y. & Lim, Kadir J. P., 2002. "Analysts' dividend forecasts," Pacific-Basin Finance Journal, Elsevier, vol. 10(4), pages 371-391, September.
    14. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    15. repec:ebl:ecbull:v:7:y:2008:i:11:p:1-20 is not listed on IDEAS
    16. Espahbodi, Reza & Dugar, Amitabh & Tehranian, Hassan, 2001. "Further evidence on optimism and underreaction in analysts' forecasts," Review of Financial Economics, Elsevier, vol. 10(1), pages 1-21.
    17. Basu, Sudipta & Markov, Stanimir, 2004. "Loss function assumptions in rational expectations tests on financial analysts' earnings forecasts," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 171-203, December.
    18. Anna M. Cianci & Satoris S. Culbertson, 2010. "The Impact of Motivational and Cognitive Factors on Optimistic Earnings Forecasts," Chapters, in: Brian Bruce (ed.), Handbook of Behavioral Finance, chapter 11, Edward Elgar Publishing.
    19. Huang, Lixin & Li, Wei & Wang, Hong & Wu, Liansheng, 2022. "Stock dividend and analyst optimistic bias in earnings forecast," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 643-659.
    20. Lijuan Huo & Jin Seo Cho, 2021. "Testing for the sandwich-form covariance matrix of the quasi-maximum likelihood estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 293-317, June.
    21. Lijuan Huo & Jin Seo Cho, 2019. "Testing for the Sandwich-Form Covariance Matrix Applied to Quasi-Maximum Likelihood Estimation Using Economic and Energy Price Growth Rates," Working papers 2019rwp-152, Yonsei University, Yonsei Economics Research Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:coacre:v:13:y:1996:i:2:p:379-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1911-3846 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.