IDEAS home Printed from https://ideas.repec.org/a/wly/canjec/v53y2020i1p43-82.html
   My bibliography  Save this article

Stated preferences over job characteristics: A panel study

Author

Listed:
  • Denise Doiron
  • Hong Il Yoo

Abstract

When making choices over jobs with different characteristics, what trade‐offs are decision‐makers willing to make? Such a question is difficult to address using typical household surveys that provide a limited amount of information on the attributes of the jobs. To address this question, a small but growing number of studies have turned to the use of stated preference experiments; but the extent to which stated choices by respondents reflect systematic trade‐offs across job characteristics remains an open question. We use two popular types of experiments (profile case best–worst scaling and multi‐profile case best–worst scaling) to elicit job preferences of nursing students and junior nurses in Australia. Each person participated in both types of experiments twice, within a span of about 15 months. Using a novel joint likelihood approach that links a decision‐maker's preferences across the two types of experiments and over time, we find that the decision‐makers make similar trade‐offs across job characteristics in both types of experiments and in both time periods, except for the trade‐off between salary and other attributes. The valuation of salary falls significantly over time relative to other job attributes for both types of experiments. Also, within each period, salary is less valued in the profile case compared to the more traditional multi‐profile case. Préférences déclarées et caractéristiques d’emplois: étude par panel. En matière de carrière, quels choix les décideurs seront‐ils disposés à faire entre plusieurs emplois aux caractéristiques différentes? Difficile de répondre à cette question en utilisant les enquêtes‐ménages traditionnelles ne fournissant qu’un nombre restreint d’informations sur les caractéristiques d’emplois. Pour tenter d’y parvenir, un nombre limité mais croissant de recherches se tournent vers les études de type préférences déclarées ; pour autant, de telles préférences déclarées reflètent‐elles les choix systématiques des répondants par rapport aux attributs des différents emplois? La question reste ouverte. Afin de recueillir les préférences professionnelles des étudiantes en soins infirmiers ainsi que des infirmières en début de carrière en Australie, nous avons utilisé deux types d’études assez courants: la profile case best‐worst scaling (étude relative à seul profil pour lequel le répondant doit choisir la meilleure et la pire caractéristique), et la multi‐profile case best‐worst scaling (étude de plusieurs profils pour lesquels le répondant doit choisir les meilleurs et les pires profiles). Les personnes sondées ont participé aux deux études deux fois dans un intervalle de 15 mois. En utilisant une nouvelle approche de probabilité jointe établissant un lien entre les préférences d’un répondant, les deux types d’études et l’intervalle de temps, nous avons découvert que les choix en matière de caractéristiques d’emplois restaient les mêmes d’une étude à l’autre à l’exception du salaire. En effet, comparativement aux autres caractéristiques, la valorisation du salaire baisse significativement dans le temps, et ce dans les deux études. De même, pour chaque période, nous avons remarqué que le salaire est davantage valorisé dans l’étude type multi‐profile case traditionnelle que dans l’étude profile case .

Suggested Citation

  • Denise Doiron & Hong Il Yoo, 2020. "Stated preferences over job characteristics: A panel study," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(1), pages 43-82, February.
  • Handle: RePEc:wly:canjec:v:53:y:2020:i:1:p:43-82
    DOI: 10.1111/caje.12431
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/caje.12431
    Download Restriction: no

    File URL: https://libkey.io/10.1111/caje.12431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
    2. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    3. Julie Riise Kolstad, 2011. "How to make rural jobs more attractive to health workers. Findings from a discrete choice experiment in Tanzania," Health Economics, John Wiley & Sons, Ltd., vol. 20(2), pages 196-211, February.
    4. Mikolaj Czajkowski & Anna Barczak & Wiktor Budzinski & Marek Giergiczny & Nick Hanley, 2014. "Within- and between- sample tests of preference stability and willingness to pay for forest management," Discussion Papers in Environment and Development Economics 2014-06, University of St. Andrews, School of Geography and Sustainable Development.
    5. Paul Frijters & Michael A. Shields & Stephen Wheatley Price, 2007. "Investigating the quitting decision of nurses: panel data evidence from the british national health service," Health Economics, John Wiley & Sons, Ltd., vol. 16(1), pages 57-73, January.
    6. Luis Huicho & J Jaime Miranda & Francisco Diez-Canseco & Claudia Lema & Andrés G Lescano & Mylene Lagarde & Duane Blaauw, 2012. "Job Preferences of Nurses and Midwives for Taking Up a Rural Job in Peru: A Discrete Choice Experiment," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-9, December.
    7. Patricia Kenny & Denise Doiron & Jane Hall & Deborah J Street & Kathleen Milton-Wildey & Glenda Parmenter, 2012. "The training and job decisions of nurses: the first year of a longitudinal study investigating nurse recruitment and retention. CHERE Working Paper 2012/02," Working Papers 2012/02, CHERE, University of Technology, Sydney.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    9. Schaafsma, Marije & Brouwer, Roy & Liekens, Inge & De Nocker, Leo, 2014. "Temporal stability of preferences and willingness to pay for natural areas in choice experiments: A test–retest," Resource and Energy Economics, Elsevier, vol. 38(C), pages 243-260.
    10. Jennifer A. Whitty & Julie Ratcliffe & Gang Chen & Paul A. Scuffham, 2014. "Australian Public Preferences for the Funding of New Health Technologies," Medical Decision Making, , vol. 34(5), pages 638-654, July.
    11. Hausman, Jerry A. & Ruud, Paul A., 1987. "Specifying and testing econometric models for rank-ordered data," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 83-104.
    12. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    13. Faical Akaichi & Rodolfo M. Nayga & José M. Gil, 2013. "Are Results from Non-hypothetical Choice-based Conjoint Analyses and Non-hypothetical Recoded-ranking Conjoint Analyses Similar?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(4), pages 949-963.
    14. Sivey, Peter & Scott, Anthony & Witt, Julia & Joyce, Catherine & Humphreys, John, 2012. "Junior doctors’ preferences for specialty choice," Journal of Health Economics, Elsevier, vol. 31(6), pages 813-823.
    15. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    16. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    17. San Miguel, Fernando & Ryan, Mandy & Scott, Anthony, 2002. "Are preferences stable? The case of health care," Journal of Economic Behavior & Organization, Elsevier, vol. 48(1), pages 1-14, May.
    18. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    19. Ryan, Mandy & Netten, Ann & Skatun, Diane & Smith, Paul, 2006. "Using discrete choice experiments to estimate a preference-based measure of outcome--An application to social care for older people," Journal of Health Economics, Elsevier, vol. 25(5), pages 927-944, September.
    20. N. Flynn, Terry & J. Peters, Tim & Coast, Joanna, 2013. "Quantifying response shift or adaptation effects in quality of life by synthesising best-worst scaling and discrete choice data," Journal of choice modelling, Elsevier, vol. 6(C), pages 34-43.
    21. Office of Health Economics, 2007. "The Economics of Health Care," For School 001490, Office of Health Economics.
    22. Mandy Ryan & Karen Gerard & Gillian Currie, 2012. "Using Discrete Choice Experiments in Health Economics," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 41, Edward Elgar Publishing.
    23. Esther W. de Bekker‐Grob & Mandy Ryan & Karen Gerard, 2012. "Discrete choice experiments in health economics: a review of the literature," Health Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 145-172, February.
    24. Ulf Liebe & Jürgen Meyerhoff & Volkmar Hartje, 2012. "Test–Retest Reliability of Choice Experiments in Environmental Valuation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(3), pages 389-407, November.
    25. Potoglou, Dimitris & Burge, Peter & Flynn, Terry & Netten, Ann & Malley, Juliette & Forder, Julien & Brazier, John E., 2011. "Best-worst scaling vs. discrete choice experiments: An empirical comparison using social care data," Social Science & Medicine, Elsevier, vol. 72(10), pages 1717-1727, May.
    26. Line Pedersen & Dorte Gyrd-Hansen, 2014. "Preference for practice: a Danish study on young doctors’ choice of general practice using a discrete choice experiment," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(6), pages 611-621, July.
    27. David F. Layton & Gardner Brown, 2000. "Heterogeneous Preferences Regarding Global Climate Change," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 616-624, November.
    28. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    29. Stirling Bryan & Lisa Gold & Rob Sheldon & Martin Buxton, 2000. "Preference measurement using conjoint methods: an empirical investigation of reliability," Health Economics, John Wiley & Sons, Ltd., vol. 9(5), pages 385-395, July.
    30. Denise Doiron & Hong Il Yoo, 2017. "Temporal Stability of Stated Preferences: The Case of Junior Nursing Jobs," Health Economics, John Wiley & Sons, Ltd., vol. 26(6), pages 802-809, June.
    31. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    32. Holte, Jon Helgheim & Kjaer, Trine & Abelsen, Birgit & Olsen, Jan Abel, 2015. "The impact of pecuniary and non-pecuniary incentives for attracting young doctors to rural general practice," Social Science & Medicine, Elsevier, vol. 128(C), pages 1-9.
    33. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    34. Alejandro Caparrós & José L. Oviedo & Pablo Campos, 2008. "Would You Choose Your Preferred Option? Comparing Choice and Recoded Ranking Experiments," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 843-855.
    35. Denise Doiron & Jane Hall & Patricia Kenny & Deborah J. Street, 2014. "Job preferences of students and new graduates in nursing," Applied Economics, Taylor & Francis Journals, vol. 46(9), pages 924-939, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diaz, Lina & Houser, Daniel & Ifcher, John & Zarghamee, Homa, 2023. "Estimating social preferences using stated satisfaction: Novel support for inequity aversion," European Economic Review, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denise Doiron & Hong Il Yoo, 2017. "Temporal Stability of Stated Preferences: The Case of Junior Nursing Jobs," Health Economics, John Wiley & Sons, Ltd., vol. 26(6), pages 802-809, June.
    2. Yoo, Hong Il & Doiron, Denise, 2013. "The use of alternative preference elicitation methods in complex discrete choice experiments," Journal of Health Economics, Elsevier, vol. 32(6), pages 1166-1179.
    3. Nicolas Krucien & Verity Watson & Mandy Ryan, 2017. "Is Best–Worst Scaling Suitable for Health State Valuation? A Comparison with Discrete Choice Experiments," Health Economics, John Wiley & Sons, Ltd., vol. 26(12), pages 1-16, December.
    4. José L. Oviedo & Hong Il Yoo, 2017. "A Latent Class Nested Logit Model for Rank-Ordered Data with Application to Cork Oak Reforestation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1021-1051, December.
    5. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    6. Arne Risa Hole & Hong Il Yoo, 2017. "The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 997-1013, November.
    7. Lancsar, Emily & Louviere, Jordan & Donaldson, Cam & Currie, Gillian & Burgess, Leonie, 2013. "Best worst discrete choice experiments in health: Methods and an application," Social Science & Medicine, Elsevier, vol. 76(C), pages 74-82.
    8. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).
    9. Emily Lancsar & Peter Burge, 2014. "Choice modelling research in health economics," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 28, pages 675-687, Edward Elgar Publishing.
    10. Samare P. I. Huls & Emily Lancsar & Bas Donkers & Jemimah Ride, 2022. "Two for the price of one: If moving beyond traditional single‐best discrete choice experiments, should we use best‐worst, best‐best or ranking for preference elicitation?," Health Economics, John Wiley & Sons, Ltd., vol. 31(12), pages 2630-2647, December.
    11. Dan Rigby & Michael Burton & Jo Pluske, 2016. "Preference Stability and Choice Consistency in Discrete Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 441-461, October.
    12. Jennifer A Whitty & Ruth Walker & Xanthe Golenko & Julie Ratcliffe, 2014. "A Think Aloud Study Comparing the Validity and Acceptability of Discrete Choice and Best Worst Scaling Methods," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    13. Buckell, John & Hess, Stephane, 2019. "Stubbing out hypothetical bias: improving tobacco market predictions by combining stated and revealed preference data," Journal of Health Economics, Elsevier, vol. 65(C), pages 93-102.
    14. Qinxin Guo & Junyi Shen, 2019. "An Empirical Comparison Between Discrete Choice Experiment and Best-worst Scaling: A Case Study of Mobile Payment Choice," Discussion Paper Series DP2019-14, Research Institute for Economics & Business Administration, Kobe University.
    15. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    16. Anderson, Christopher M. & Das, Chhandita & Tyrrell, Timothy J., 2006. "Parking preferences among tourists in Newport, Rhode Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 334-353, May.
    17. Yan, Jin & Yoo, Hong Il, 2019. "Semiparametric estimation of the random utility model with rank-ordered choice data," Journal of Econometrics, Elsevier, vol. 211(2), pages 414-438.
    18. Milad Haghani & Michiel C. J. Bliemer & John M. Rose & Harmen Oppewal & Emily Lancsar, 2021. "Hypothetical bias in stated choice experiments: Part I. Integrative synthesis of empirical evidence and conceptualisation of external validity," Papers 2102.02940, arXiv.org.
    19. Denise Doiron & Jane Hall & Patricia Kenny & Deborah J. Street, 2014. "Job preferences of students and new graduates in nursing," Applied Economics, Taylor & Francis Journals, vol. 46(9), pages 924-939, March.
    20. Aizaki, Hideo & Fogarty, James, 2019. "An R package and tutorial for case 2 best–worst scaling," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:canjec:v:53:y:2020:i:1:p:43-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1540-5982 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.