IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v36y2020i6p1131-1146.html
   My bibliography  Save this article

Periodic point processes: Theory and application

Author

Listed:
  • Stephen D. Casey

Abstract

We address the problems of extracting information generated by one dimensional periodic point processes. These problems arise in numerous situations, from astronomy and biomedical applications to reliability and quality control and signal processing. We divide our analysis into two cases, namely single and then multiple source(s). We wish to extract the fundamental period of the generator(s), and, in the second case, to deinterleave the processes. We present two algorithms, designed to work on all one dimensional periodic processes, but in particular on sparse datasets where other procedures break down. The first algorithm works on data from single period processes, computing an estimate of the underlying period. It is extremely computationally efficient and straightforward, and works on all single period processes, but in particular on sparse datasets where others break down. Its justification, however, rests on some deep mathematics, including a probabilistic interpretation of the Riemann zeta function. We then build upon this procedure to analyze data from multiple periodic processes. This second procedure relies on the Riemann zeta function, Weyl's equidistribution theorem, and Wiener's periodogram.

Suggested Citation

  • Stephen D. Casey, 2020. "Periodic point processes: Theory and application," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(6), pages 1131-1146, November.
  • Handle: RePEc:wly:apsmbi:v:36:y:2020:i:6:p:1131-1146
    DOI: 10.1002/asmb.2586
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2586
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ji Hwan Cha & Maxim Finkelstein, 2018. "Point Processes for Reliability Analysis," Springer Series in Reliability Engineering, Springer, number 978-3-319-73540-5, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    3. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    4. Cha, Ji Hwan & Finkelstein, Maxim, 2024. "Preventive maintenance for the constrained multi-attempt minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Tomasz Klimczak & Jacek Paś & Stanisław Duer & Adam Rosiński & Patryk Wetoszka & Kamil Białek & Michał Mazur, 2022. "Selected Issues Associated with the Operational and Power Supply Reliability of Fire Alarm Systems," Energies, MDPI, vol. 15(22), pages 1-26, November.
    6. Stathis Chadjiconstantinidis, 2023. "Sequences of Improved Two-Sided Bounds for the Renewal Function and the Solutions of Renewal-Type Equations," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-31, June.
    7. Cha, Ji Hwan & Finkelstein, Maxim, 2019. "Stochastic modeling for systems with delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 118-124.
    8. Krzysztof Jakubowski & Jacek Paś & Stanisław Duer & Jarosław Bugaj, 2021. "Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings," Energies, MDPI, vol. 14(23), pages 1-24, November.
    9. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zhong, 2019. "Scheduling of imperfect inspections for reliability critical systems with shock-driven defects and delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 89-98.
    11. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Optimal preventive replacement policy for homogeneous cold standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Duan, Chaoqun & Gong, Ting & Yan, Liangwen & Li, Xinmin, 2024. "Bi-level corrected residual life-based maintenance for deteriorating systems under competing risks," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Francisco Germán Badía & Hyunju Lee, 2020. "On stochastic comparisons and ageing properties of multivariate proportional hazard rate mixtures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 355-375, April.
    16. Ji Hwan Cha & Maxim Finkelstein, 2020. "Stochastic modelling of operational quality of k-out-of-n systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 424-441, July.
    17. Maxim Finkelstein & Ji Hwan Cha, 2021. "On degradation-based imperfect repair and induced generalized renewal processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1026-1045, December.
    18. Ye, Kewei & Wang, Han & Ma, Xiaobing, 2023. "A generalized dynamic stress-strength interference model under δ-failure criterion for self-healing protective structure," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Badía, F.G. & Berrade, M.D. & Lee, Hyunju, 2020. "An study of cost effective maintenance policies: Age replacement versus replacement after N minimal repairs," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Maxim Finkelstein & Gregory Levitin & Oleg A Stepanov, 2019. "On operation termination for degrading systems with two types of failures," Journal of Risk and Reliability, , vol. 233(3), pages 419-426, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:36:y:2020:i:6:p:1131-1146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.