IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v22y2021i1p217-226n11.html
   My bibliography  Save this article

Analysing the impact of dependency on conditional survival functions using copulas

Author

Listed:
  • Safari-Katesari Hadi

    (School of Mathematical and Statistical Sciences, Southern Illinois University, Carbondale, IL, 62901-4408, United States .)

  • Zaroudi Samira

    (School of Mathematical and Statistical Sciences, Southern Illinois University, Carbondale, IL, 62901-4408, United States)

Abstract

Nowadays, insurance contract reserves for coupled lives are considered jointly, which has a significant influence on the process of determining actuarial reserves. In this paper, conditional survival distributions of life insurance reserves are computed using copulas. Subsequently, the results are compared with an independence case. These calculations are based on selected Archimedean copulas and apply when the ‘death of one individual’ condition exists. The estimation outcome indicates that the insurer reserves calculated by means of Archimedean copulas are far more effective than those resulting from an independence assumption. The study demonstrates that copula-based dependency modelling improves the calculations of reserves made for actuarial purposes.

Suggested Citation

  • Safari-Katesari Hadi & Zaroudi Samira, 2021. "Analysing the impact of dependency on conditional survival functions using copulas," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 217-226, March.
  • Handle: RePEc:vrs:stintr:v:22:y:2021:i:1:p:217-226:n:11
    DOI: 10.21307/stattrans-2021-013
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2021-013
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2021-013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Spreeuw, Jaap & Owadally, Iqbal, 2013. "Investigating the Broken-Heart Effect: a Model for Short-Term Dependence between the Remaining Lifetimes of Joint Lives," Annals of Actuarial Science, Cambridge University Press, vol. 7(2), pages 236-257, September.
    2. Klugman, Stuart A. & Parsa, Rahul, 1999. "Fitting bivariate loss distributions with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 139-148, March.
    3. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    4. Min Ji & Mary Hardy & Johnny Siu-Hang Li, 2011. "Markovian Approaches to Joint-Life Mortality," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(3), pages 357-376.
    5. Hadi Safari-Katesari & Samira Zaroudi, 2020. "Count copula regression model using generalized beta distribution of the second kind," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Safari-Katesari & Samira Zaroudi, 2021. "Analysing the impact of dependency on conditional survival functions using copulas," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 217-226, March.
    2. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    3. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    4. Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
    5. Albrecher Hansjörg & Bladt Martin & Müller Alaric J. A., 2023. "Joint lifetime modeling with matrix distributions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-22, January.
    6. Ying Jiao & Yahia Salhi & Shihua Wang, 2022. "Dynamic Bivariate Mortality Modelling," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 917-938, June.
    7. Oriol Roch Casellas & Antonio Alegre Escolano, 2005. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Working Papers in Economics 143, Universitat de Barcelona. Espai de Recerca en Economia.
    8. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    9. Gregory Ponthiere, 2016. "The contribution of improved joint survival conditions to living standards: an equivalent consumption approach," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(2), pages 407-449, February.
    10. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    11. Miriam Jaser & Aleksey Min, 2021. "On tests for symmetry and radial symmetry of bivariate copulas towards testing for ellipticity," Computational Statistics, Springer, vol. 36(3), pages 1-26, September.
    12. Li, Deyuan & Peng, Liang, 2009. "Goodness-of-fit test for tail copulas modeled by elliptical copulas," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1097-1104, April.
    13. Katsuichiro Goda & Jiandong Ren, 2010. "Assessment of Seismic Loss Dependence Using Copula," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1076-1091, July.
    14. Di Bernardino, Elena & Rullière, Didier, 2013. "Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 190-205.
    15. Gourieroux, Christian & Lu, Yang, 2015. "Love and death: A Freund model with frailty," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 191-203.
    16. Elena Di Bernardino & Didier Rullière, 2012. "Distortions of multivariate risk measures: a level-sets based approach," Working Papers hal-00756387, HAL.
    17. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    18. Charpentier, Arthur & Segers, Johan, 2007. "Lower tail dependence for Archimedean copulas: Characterizations and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 525-532, May.
    19. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    20. Genest, Christian & Masiello, Esterina & Tribouley, Karine, 2009. "Estimating copula densities through wavelets," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 170-181, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:22:y:2021:i:1:p:217-226:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.