IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v69y2014icp54-66.html
   My bibliography  Save this article

Finding multivariate outliers with FastPCS

Author

Listed:
  • Vakili, Kaveh
  • Schmitt, Eric

Abstract

The Projection Congruent Subset (PCS) is a new method for finding multivariate outliers. Like many other outlier detection procedures, PCS searches for a subset which minimizes a criterion. The difference is that the new criterion was designed to be insensitive to the outliers. PCS is supported by FastPCS, a fast and affine equivariant algorithm which is also detailed. Both an extensive simulation study and a real data application from the field of engineering show that FastPCS performs better than its competitors.

Suggested Citation

  • Vakili, Kaveh & Schmitt, Eric, 2014. "Finding multivariate outliers with FastPCS," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 54-66.
  • Handle: RePEc:eee:csdana:v:69:y:2014:i:c:p:54-66
    DOI: 10.1016/j.csda.2013.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313002661
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rousseeuw, Peter J., 1994. "Unconventional features of positive-breakdown estimators," Statistics & Probability Letters, Elsevier, vol. 19(5), pages 417-431, April.
    2. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    2. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
    3. Schmitt, Eric & Öllerer, Viktoria & Vakili, Kaveh, 2014. "The finite sample breakdown point of PCS," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 214-220.
    4. Sevvandi Kandanaarachchi & Rob J Hyndman, 2019. "Dimension Reduction For Outlier Detection Using DOBIN," Monash Econometrics and Business Statistics Working Papers 17/19, Monash University, Department of Econometrics and Business Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    2. Torti, Francesca & Corbellini, Aldo & Atkinson, Anthony C., 2021. "fsdaSAS: a package for robust regression for very large datasets including the batch forward search," LSE Research Online Documents on Economics 109895, London School of Economics and Political Science, LSE Library.
    3. Visek, Jan Amos, 2000. "On the diversity of estimates," Computational Statistics & Data Analysis, Elsevier, vol. 34(1), pages 67-89, July.
    4. Alashwali, Fatimah & Kent, John T., 2016. "The use of a common location measure in the invariant coordinate selection and projection pursuit," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 145-161.
    5. Gervini, Daniel, 2003. "A robust and efficient adaptive reweighted estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 116-144, January.
    6. B. Barış Alkan, 2016. "Robust Principal Component Analysis Based on Modified Minimum Covariance Determinant in the Presence of Outliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 85-94, September.
    7. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    8. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    9. Matthias Kohl & Peter Ruckdeschel & Helmut Rieder, 2010. "Infinitesimally Robust estimation in general smoothly parametrized models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 333-354, August.
    10. Bilodeau, Martin & Micheaux, Pierre Lafaye de & Mahdi, Smail, 2015. "The R Package groc for Generalized Regression on Orthogonal Components," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i01).
    11. Gianna S. Monti & Peter Filzmoser & Roland C. Deutsch, 2018. "A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2073-2086, October.
    12. Sanjeena Subedi & Paul McNicholas, 2014. "Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 167-193, June.
    13. T. Kirschstein & Steffen Liebscher, 2019. "Assessing the market values of soccer players – a robust analysis of data from German 1. and 2. Bundesliga," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1336-1349, May.
    14. Mara Velina & Janis Valeinis & Luca Greco & George Luta, 2016. "Empirical Likelihood-Based ANOVA for Trimmed Means," IJERPH, MDPI, vol. 13(10), pages 1-13, September.
    15. Rafael Laboissière & Pierre-Alain Barraud & Corinne Cian, 2017. "Real and visually-induced body inclination differently affect the perception of object stability," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-15, October.
    16. Baty, Florent & Ritz, Christian & Charles, Sandrine & Brutsche, Martin & Flandrois, Jean-Pierre & Delignette-Muller, Marie-Laure, 2015. "A Toolbox for Nonlinear Regression in R: The Package nlstools," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i05).
    17. Vilijandas Bagdonavičius & Linas Petkevičius, 2020. "A new multiple outliers identification method in linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 275-296, April.
    18. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    19. Steven P. Ellis, 2000. "Singularity and outliers in linear regression with application to least squares, least squares linear regression," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 121-129.
    20. Morris, Katherine & McNicholas, Paul D., 2016. "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 133-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:69:y:2014:i:c:p:54-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.