IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v17y2016i2p211-219n5.html
   My bibliography  Save this article

Bayesian Inference for State Space Model with Panel Data

Author

Listed:
  • Pandey Ranjita

    (Department of Statistics, University of Delhi, Delhi, ; India)

  • Chaturvedi Anoop

    (Department of Statistics, University of Allahabad, ; Delhi, ; India)

Abstract

The present work explores panel data set-up in a Bayesian state space model. The conditional posterior densities of parameters are utilized to determine the marginal posterior densities using the Gibbs sampler. An efficient one step ahead predictive density mechanism is developed to further the state of art in prediction-based decision making.

Suggested Citation

  • Pandey Ranjita & Chaturvedi Anoop, 2016. "Bayesian Inference for State Space Model with Panel Data," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 211-219, June.
  • Handle: RePEc:vrs:stintr:v:17:y:2016:i:2:p:211-219:n:5
    DOI: 10.21307/stattrans-2016-014
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2016-014
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2016-014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    2. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    3. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    4. Maddala, G S, 1971. "The Use of Variance Components Models in Pooling Cross Section and Time Series Data," Econometrica, Econometric Society, vol. 39(2), pages 341-358, March.
    5. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    2. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    3. Manuel Arellano & Olympia Bover, 1990. "La econometría de datos de panel," Investigaciones Economicas, Fundación SEPI, vol. 14(1), pages 3-45, January.
    4. Anders Skrondal & Sophia Rabe-Hesketh, 2022. "The Role of Conditional Likelihoods in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 799-834, September.
    5. Jean-Bernard Chatelain & Kirsten Ralf, 2010. "Inference on Time-Invariant Variables using Panel Data: A Pre-Test Estimator with an Application to the Returns to Schooling," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00492039, HAL.
    6. Theodore Joyce & Andrew D. Racine & Naci Mocan, 1992. "The Consequences and Costs of Maternal Substance Abuse in New York City," NBER Working Papers 3987, National Bureau of Economic Research, Inc.
    7. Silvio R. Rendon, 2013. "Fixed and Random Effects in Classical and Bayesian Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(3), pages 460-476, June.
    8. Sebastian Kripfganz, 2017. "Sequential (two-stage) estimation of linear panel-data models," German Stata Users' Group Meetings 2017 03, Stata Users Group.
    9. O'Brien, Raymond & Patacchini, Eleonora, 2003. "Testing the exogeneity assumption in panel data models with "non classical" disturbances," Discussion Paper Series In Economics And Econometrics 0302, Economics Division, School of Social Sciences, University of Southampton.
    10. Arnd Kölling & Claus Schnabel, 2022. "Owners, external managers and industrial relations in German establishments," British Journal of Industrial Relations, London School of Economics, vol. 60(2), pages 424-443, June.
    11. Maurice J.G. Bun & Martin A. Carree & Artūras Juodis, 2017. "On Maximum Likelihood Estimation of Dynamic Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 463-494, August.
    12. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2009. "Testing the fixed effects restrictions? A Monte Carlo study of Chamberlain's Minimum Chi-Squared test," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1358-1362, May.
    13. Dilmaghani, Maryam, 2021. "The gender gap in competitive chess across countries: Commanding queens in command economies," Journal of Comparative Economics, Elsevier, vol. 49(2), pages 425-441.
    14. Jones, Andrew M. & Wildman, John, 2008. "Health, income and relative deprivation: Evidence from the BHPS," Journal of Health Economics, Elsevier, vol. 27(2), pages 308-324, March.
    15. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    16. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    17. Hausman, Jerry A., 2003. "Triangular structural model specification and estimation with application to causality," Journal of Econometrics, Elsevier, vol. 112(1), pages 107-113, January.
    18. Karen Miranda & Oscar Martínez Ibáñez & Miguel Manjón Antolín, 2015. "Estimating Individual Effects and their Spatial Spillovers in Linear Panel Data Models," Post-Print hal-01430809, HAL.
    19. Jan Ámos Víšek, 2015. "Estimating the Model with Fixed and Random Effects by a Robust Method," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 999-1014, December.
    20. Chatelain, Jean-Bernard & Ralf, Kirsten, 2021. "Inference on time-invariant variables using panel data: A pretest estimator," Economic Modelling, Elsevier, vol. 97(C), pages 157-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:17:y:2016:i:2:p:211-219:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.