IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v15y2013i1p29-44.html
   My bibliography  Save this article

Artificial Neural Networks for Predicting Real Estate Prices || Redes neuronales artificiales para la predicción de precios inmobiliarios

Author

Listed:
  • Núñez Tabales, Julia M.

    (Faculty of Economics, University of Cordoba (Spain))

  • Caridad y Ocerin, José María

    (Faculty of Economics, University of Cordoba (Spain))

  • Rey Carmona, Francisco J.

    (Faculty of Economics, University of Cordoba (Spain))

Abstract

Econometric models, in the estimation of real estate prices, are a useful and realistic approach for buyers and for local and fiscal authorities. From the classical hedonic models to more data driven procedures, based on Artificial Neural Networks (ANN), many papers have appeared in economic literature trying to compare the results attained with both approaches. We insist on the use of ANN, when there is enough statistical information, and will detail some comparisons to hedonic modeling, in a medium size city in the South of Spain, with an extensive set of data spanning over several years, collected before the actual downturn of the market. Exogenous variables include each dwelling's external and internal data (both numerical and qualitative), and data from the building in which it is located and its surroundings. Alternative models are estimated for several time intervals, and enabling the comparison of the effects of the rising prices during the bull market over the last decade. || Los modelos econométricos en la valoración de precios inmobiliarios constituyen una herramienta útil tanto para los compradores como para las autoridades locales y fiscales. Desde los modelos hedónicos clásicos hasta los planteamientos actuales a través de redes neuronales artificiales (RNA), han tenido lugar numerosas aportaciones en la literatura económica que tratan de comparar los resultados de ambos métodos. Insistimos en el empleo de RNA en el caso de disponer de suficiente información estadística. En este trabajo se aplica dicha metodología en una ciudad de tamaño medio situada en el sur de España, utilizando una extensa muestra de datos que comprende varios años precedentes a la crisis actual. Las variables utilizadas -tanto cuantitativas como cualitativas- incluyen datos externos e internos de la vivienda, del edificio en el que está localizada, así como de su entorno. Se construyen varios modelos alternativos para distintos intervalos de tiempo, siendo capaces de estimar los efectos de los precios crecientes del mercado alcista durante la década pasada.

Suggested Citation

  • Núñez Tabales, Julia M. & Caridad y Ocerin, José María & Rey Carmona, Francisco J., 2013. "Artificial Neural Networks for Predicting Real Estate Prices || Redes neuronales artificiales para la predicción de precios inmobiliarios," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 29-44, June.
  • Handle: RePEc:pab:rmcpee:v:15:y:2013:i:1:p:29-44
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/pdf/vol15/art67.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/bibtex.php?id=67
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Limsombunchai, Visit, 2004. "House Price Prediction: Hedonic Price Model vs. Artificial Neural Network," 2004 Conference, June 25-26, 2004, Blenheim, New Zealand 97781, New Zealand Agricultural and Resource Economics Society.
    2. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    3. Elaine M. Worzala & Margarita Lenk & Ana Silva, 1995. "An Exploration of Neural Networks and Its Application to Real Estate Valuation," Journal of Real Estate Research, American Real Estate Society, vol. 10(2), pages 185-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez Muñoz de Toro, Gonzalo R. & Uriarte, Juan I. & Delbianco, Fernando & Larrosa, Juan M.C., 2017. "Un modelo hedónico de precios en línea de automóviles usados en Argentina || A Hedonic Model of Online Prices of Used Cars in Argentina," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 25-53, Diciembre.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Landajo & Celia Bilbao & Amelia Bilbao, 2012. "Nonparametric neural network modeling of hedonic prices in the housing market," Empirical Economics, Springer, vol. 42(3), pages 987-1009, June.
    2. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    3. Jose Torres-Pruñonosa & Pablo García-Estévez & Camilo Prado-Román, 2021. "Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing," Mathematics, MDPI, vol. 9(7), pages 1-16, April.
    4. William Cheung & Lewen Guo & Yuichiro Kawaguchi, 2021. "Automated valuation model for residential rental markets: evidence from Japan," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-34, December.
    5. Raul-Tomas Mora-Garcia & Maria-Francisca Cespedes-Lopez & V. Raul Perez-Sanchez & Pablo Marti & Juan-Carlos Perez-Sanchez, 2019. "Determinants of the Price of Housing in the Province of Alicante (Spain): Analysis Using Quantile Regression," Sustainability, MDPI, vol. 11(2), pages 1-33, January.
    6. Maurizio d’Amato, 2007. "Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies," International Real Estate Review, Global Social Science Institute, vol. 10(2), pages 42-65.
    7. Camilo Serrano & Martin Hoesli, 2010. "Are Securitized Real Estate Returns more Predictable than Stock Returns?," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 170-192, August.
    8. Mahdieh Yazdani & Maziar Raissi, 2023. "Real Estate Property Valuation using Self-Supervised Vision Transformers," Papers 2302.00117, arXiv.org.
    9. Çağlayan Ebru & Arikan Eban, 2011. "Determinants of house prices in Istanbul: a quantile regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(2), pages 305-317, February.
    10. Jos魍ar𨁍ontero-Lorenzo & Beatriz Larraz-Iribas, 2012. "Space-time approach to commercial property prices valuation," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3705-3715, October.
    11. Hyunsoo Kim & Youngwoo Kwon & Yeol Choi, 2020. "Assessing the Impact of Public Rental Housing on the Housing Prices in Proximity: Based on the Regional and Local Level of Price Prediction Models Using Long Short-Term Memory (LSTM)," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    12. Mehmet Emin Tabar & Aziz Sisman & Yasemin Sisman, 2023. "A Real Estate Appraisal Model with Artificial Neural Networks and Fuzzy Logic: A Local Case Study of Samsun City," International Real Estate Review, Global Social Science Institute, vol. 26(4), pages 569-585.
    13. Dawid Siwicki, 2021. "The Application of Machine Learning Algorithms for Spatial Analysis: Predicting of Real Estate Prices in Warsaw," Working Papers 2021-05, Faculty of Economic Sciences, University of Warsaw.
    14. Jun Kang & Hyun Jun Lee & Seung Hwan Jeong & Hee Soo Lee & Kyong Joo Oh, 2020. "Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    15. Renigier-Biłozor Małgorzata & Wiśniewski Radosław, 2012. "The Impact of Macroeconomic Factors on Residential Property Price Indices in Europe," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 103-125, December.
    16. Vladimir Vargas-Calder'on & Jorge E. Camargo, 2020. "Towards robust and speculation-reduction real estate pricing models based on a data-driven strategy," Papers 2012.09115, arXiv.org.
    17. George H. Lentz & Ko Wang, 1998. "Residential Appraisal and the Lending Process: A Survey of Issues," Journal of Real Estate Research, American Real Estate Society, vol. 15(1), pages 11-40.
    18. Gao, Qishuo & Shi, Vivien & Pettit, Christopher & Han, Hoon, 2022. "Property valuation using machine learning algorithms on statistical areas in Greater Sydney, Australia," Land Use Policy, Elsevier, vol. 123(C).
    19. repec:ire:issued:v:26:n:04:2023:p:565-581 is not listed on IDEAS
    20. Beatriz Larraz, 2011. "An Expert System for Online Residential Properties Valuation," Review of Economics & Finance, Better Advances Press, Canada, vol. 1, pages 69-82, April.
    21. Martin Bohl & Winfried Michels & Jens Oelgemöller, 2012. "Determinanten von Wohnimmobilienpreisen: Das Beispiel der Stadt Münster," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(2), pages 193-208, September.

    More about this item

    Keywords

    house prices; artificial neural networks (ANN); valuation; econometric modeling; precios de la vivienda; redes neuronales artificiales (RNA); valoración; modelos econométricos;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:15:y:2013:i:1:p:29-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.