IDEAS home Printed from https://ideas.repec.org/a/vrs/remava/v30y2022i4p1-16n7.html
   My bibliography  Save this article

Real Estate Market Price Prediction Model of Istanbul

Author

Listed:
  • Tekin Mert

    (Business Analytics, University of Warwick, United Kingdom)

  • Sari Irem Ucal

    (Department of Industrial Engineering, Istanbul Technical University, Turkey)

Abstract

The Turkish Housing Market has experienced a steep increase in prices. Individual and corporate investors now possess tools to estimate the real estate evaluation while using smaller amounts of data with traditional techniques. Not having an analytical approach to evaluate the price of real estate could cause the investor to lose considerable amounts of money, especially in the case of individual investors. This study aims to determine how different machine learning algorithms with real market data can improve this process. To be able to test this, over 30000 lines of housing market data with over 13 variables is scraped. Data is cleansed, manipulated and visualized, while predictive models such as linear regression, polynomial regression, decision trees, random forests, and XGboost are created and compared according to the CRISP-DM framework. The results show that using complex techniques to create machine learning models could improve the accuracy in predicting the listing prices of houses. This paper aims to: – analyze the effects of using a real and relatively large amount of data, – determine the main variables that contribute to the evaluation of an estate, – compare different machine learning models to find the optimal one for the real estate market, – create an accurate model to predict the value of any house on the Istanbul market.

Suggested Citation

  • Tekin Mert & Sari Irem Ucal, 2022. "Real Estate Market Price Prediction Model of Istanbul," Real Estate Management and Valuation, Sciendo, vol. 30(4), pages 1-16, December.
  • Handle: RePEc:vrs:remava:v:30:y:2022:i:4:p:1-16:n:7
    DOI: 10.2478/remav-2022-0025
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/remav-2022-0025
    Download Restriction: no

    File URL: https://libkey.io/10.2478/remav-2022-0025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:rre:publsh:v:39:y:2009:i:1:p:9-22 is not listed on IDEAS
    2. Rotimi Boluwatife Abidoye & Albert P. C. Chan, 2017. "Modelling property values in Nigeria using artificial neural network," Journal of Property Research, Taylor & Francis Journals, vol. 34(1), pages 36-53, January.
    3. Liu, Lianyi & Wu, Lifeng, 2020. "Predicting housing prices in China based on modified Holt's exponential smoothing incorporating whale optimization algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    4. Gang-Zhi Fan & Seow Eng Ong & Hian Chye Koh, 2006. "Determinants of House Price: A Decision Tree Approach," Urban Studies, Urban Studies Journal Limited, vol. 43(12), pages 2301-2315, November.
    5. Bradford Case & John Clapp & Robin Dubin & Mauricio Rodriguez, 2004. "Modeling Spatial and Temporal House Price Patterns: A Comparison of Four Models," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 167-191, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Qishuo & Shi, Vivien & Pettit, Christopher & Han, Hoon, 2022. "Property valuation using machine learning algorithms on statistical areas in Greater Sydney, Australia," Land Use Policy, Elsevier, vol. 123(C).
    2. Stefan Sebastian Fahrländer, 2006. "Semiparametric Construction of Spatial Generalized Hedonic Models for Private Properties," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 142(IV), pages 501-528, December.
    3. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    4. Crowe, Christopher & Dell’Ariccia, Giovanni & Igan, Deniz & Rabanal, Pau, 2013. "How to deal with real estate booms: Lessons from country experiences," Journal of Financial Stability, Elsevier, vol. 9(3), pages 300-319.
    5. Liang Peng, 2012. "Repeat Sales Regression on Heterogeneous Properties," The Journal of Real Estate Finance and Economics, Springer, vol. 45(3), pages 804-827, October.
    6. Chica-Olmo, Jorge & Cano-Guervos, Rafael, 2020. "Does my house have a premium or discount in relation to my neighbors? A regression-kriging approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    7. Marko Kryvobokov, 2011. "Defining apartment neighbourhoods with Thiessen polygons and fuzzy equality clustering," ERES eres2011_142, European Real Estate Society (ERES).
    8. Jorge Chica-Olmo, 2007. "Prediction of Housing Location Price by a Multivariate Spatial Method: Cokriging," Journal of Real Estate Research, American Real Estate Society, vol. 29(1), pages 95-114.
    9. Ansgar Belke & Jonas Keil, 2018. "Fundamental Determinants of Real Estate Prices: A Panel Study of German Regions," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 24(1), pages 25-45, February.
    10. Mateusz Tomal & Marco Helbich, 2022. "The private rental housing market before and during the COVID-19 pandemic: A submarket analysis in Cracow, Poland," Environment and Planning B, , vol. 49(6), pages 1646-1662, July.
    11. Stanislav Endel & Marek Teichmann & Dagmar Kutá, 2020. "Possibilities of House Valuation Automation in the Czech Republic," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    12. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    13. Koen Koning & Tatiana Filatova & Okmyung Bin, 2018. "Improved Methods for Predicting Property Prices in Hazard Prone Dynamic Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 247-263, February.
    14. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2007. "Spatial Dependence, Housing Submarkets, and House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 35(2), pages 143-160, August.
    15. Antonio Páez & Fei Long & Steven Farber, 2008. "Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques," Urban Studies, Urban Studies Journal Limited, vol. 45(8), pages 1565-1581, July.
    16. Ti-Ching Peng, 2021. "The effect of hazard shock and disclosure information on property and land prices: a machine-learning assessment in the case of Japan," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 41(1), pages 1-32, February.
    17. Rainer Schulz & Martin Wersing & Axel Werwatz, 2014. "Automated valuation modelling: a specification exercise," Journal of Property Research, Taylor & Francis Journals, vol. 31(2), pages 131-153, June.
    18. Jos魍ar𨁍ontero-Lorenzo & Beatriz Larraz-Iribas, 2012. "Space-time approach to commercial property prices valuation," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3705-3715, October.
    19. David Ling & Milena Petrova, 2008. "Avoiding Taxes at Any Cost: The Economics of Tax-Deferred Real Estate Exchanges," The Journal of Real Estate Finance and Economics, Springer, vol. 36(4), pages 367-404, May.
    20. Nana Cui & Hengyu Gu & Tiyan Shen & Changchun Feng, 2018. "The Impact of Micro-Level Influencing Factors on Home Value: A Housing Price-Rent Comparison," Sustainability, MDPI, vol. 10(12), pages 1-23, November.

    More about this item

    Keywords

    price prediction; machine learning; real estate market;
    All these keywords.

    JEL classification:

    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:remava:v:30:y:2022:i:4:p:1-16:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.