IDEAS home Printed from https://ideas.repec.org/a/vrs/poicbe/v11y2017i1p669-675n71.html
   My bibliography  Save this article

Data science and digital society

Author

Listed:
  • Chen Cathy Yi-Hsuan

    (Ladislaus von Bortkievicz Chair of Statistics; Institute for Statistics und Econometrics; School of Business and Economics; Humboldt-Universität zu Berlin; Berlin, Germany)

  • Härdle Wolfgang Karl

    (Ladislaus von Bortkievicz Chair of Statistics; Institute for Statistics und Econometrics; School of Business and Economics; Humboldt-Universität zu Berlin; Berlin, Germany)

Abstract

Data Science looks at raw numbers and informational objects created by different disciplines. The Digital Society creates information and numbers from many scientific disciplines. The amassment of data though makes is hard to find structures and requires a skill full analysis of this massive raw material. The thoughts presented here on DS2 - Data Science & Digital Society analyze these challenges and offers ways to handle the questions arising in this evolving context. We propose three levels of analysis and lay out how one can react to the challenges that come about. Concrete examples concern Credit default swaps, Dynamic Topic modeling, Crypto currencies and above all the quantitative analysis of real data in a DS2 context.

Suggested Citation

  • Chen Cathy Yi-Hsuan & Härdle Wolfgang Karl, 2017. "Data science and digital society," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 669-675, July.
  • Handle: RePEc:vrs:poicbe:v:11:y:2017:i:1:p:669-675:n:71
    DOI: 10.1515/picbe-2017-0071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/picbe-2017-0071
    Download Restriction: no

    File URL: https://libkey.io/10.1515/picbe-2017-0071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2009. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," SFB 649 Discussion Papers 2009-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    3. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 610-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meihui Guo & Yi-Ting Guo & Chi-Jeng Wang & Liang-Ching Lin, 2015. "Assessing influential trade effects via high-frequency market reactions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1458-1471, July.
    2. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    3. Chen, Ying & Chua, Wee Song & Härdle, Wolfgang Karl, 2016. "Forecasting limit order book liquidity supply-demand curves with functional AutoRegressive dynamics," SFB 649 Discussion Papers 2016-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2011-056 is not listed on IDEAS
    5. Hautsch, Nikolaus & Huang, Ruihong, 2012. "The market impact of a limit order," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 501-522.
    6. Choros-Tomczyk, Barbara & Härdle, Wolfgang Karl & Okhrin, Ostap, 2013. "CDO surfaces dynamics," SFB 649 Discussion Papers 2013-032, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. repec:hum:wpaper:sfb649dp2016-025 is not listed on IDEAS
    8. Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019. "Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
    9. Brownlees, Christian T. & Gallo, Giampiero M., 2011. "Shrinkage estimation of semiparametric multiplicative error models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 365-378.
    10. Hautsch, Nikolaus & Huang, Ruihong, 2011. "Limit order flow, market impact and optimal order sizes: Evidence from NASDAQ TotalView-ITCH data," SFB 649 Discussion Papers 2011-056, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. repec:hum:wpaper:sfb649dp2012-048 is not listed on IDEAS
    12. Andrija Mihoci & Christopher Hian-Ann Ting & Meng-Jou Lu & Kainat Khowaja, 2022. "Adaptive order flow forecasting with multiplicative error models," Digital Finance, Springer, vol. 4(1), pages 89-108, March.
    13. Siikanen, Milla & Kanniainen, Juho & Luoma, Arto, 2017. "What drives the sensitivity of limit order books to company announcement arrivals?," Economics Letters, Elsevier, vol. 159(C), pages 65-68.
    14. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2017. "Dynamic semiparametric factor model with a common break," SFB 649 Discussion Papers 2017-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    16. Härdle, Wolfgang Karl & Majer, Piotr, 2012. "Yield curve modeling and forecasting using semiparametric factor dynamics," SFB 649 Discussion Papers 2012-048, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Nguyen, Giang & Engle, Robert & Fleming, Michael & Ghysels, Eric, 2020. "Liquidity and volatility in the U.S. Treasury market," Journal of Econometrics, Elsevier, vol. 217(2), pages 207-229.
    18. repec:hum:wpaper:sfb649dp2013-032 is not listed on IDEAS
    19. Choroś-Tomczyk, Barbara & Härdle, Wolfgang Karl & Okhrin, Ostap, 2016. "A semiparametric factor model for CDO surfaces dynamics," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 151-163.
    20. Christos Kollias & Stephanos Papadamou & Costas Siriopoulos, 2013. "European Markets’ Reactions to Exogenous Shocks: A High Frequency Data Analysis of the 2005 London Bombings," IJFS, MDPI, vol. 1(4), pages 1-14, November.
    21. repec:hum:wpaper:sfb649dp2017-026 is not listed on IDEAS
    22. Geir H. Bjønnes & Carol L. Osler & Dagfinn Rime, 2021. "Price discovery in two‐tier markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 3109-3133, April.
    23. Kyle Bechler & Michael Ludkovski, 2017. "Order Flows and Limit Order Book Resiliency on the Meso-Scale," Papers 1708.02715, arXiv.org.
    24. repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
    25. Siikanen, Milla & Kanniainen, Juho & Valli, Jaakko, 2017. "Limit order books and liquidity around scheduled and non-scheduled announcements: Empirical evidence from NASDAQ Nordic," Finance Research Letters, Elsevier, vol. 21(C), pages 264-271.
    26. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:poicbe:v:11:y:2017:i:1:p:669-675:n:71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.