IDEAS home Printed from https://ideas.repec.org/a/vrs/poicbe/v11y2017i1p669-675n71.html
   My bibliography  Save this article

Data science and digital society

Author

Listed:
  • Chen Cathy Yi-Hsuan

    (Ladislaus von Bortkievicz Chair of Statistics; Institute for Statistics und Econometrics; School of Business and Economics; Humboldt-Universität zu Berlin; Berlin, Germany)

  • Härdle Wolfgang Karl

    (Ladislaus von Bortkievicz Chair of Statistics; Institute for Statistics und Econometrics; School of Business and Economics; Humboldt-Universität zu Berlin; Berlin, Germany)

Abstract

Data Science looks at raw numbers and informational objects created by different disciplines. The Digital Society creates information and numbers from many scientific disciplines. The amassment of data though makes is hard to find structures and requires a skill full analysis of this massive raw material. The thoughts presented here on DS2 - Data Science & Digital Society analyze these challenges and offers ways to handle the questions arising in this evolving context. We propose three levels of analysis and lay out how one can react to the challenges that come about. Concrete examples concern Credit default swaps, Dynamic Topic modeling, Crypto currencies and above all the quantitative analysis of real data in a DS2 context.

Suggested Citation

  • Chen Cathy Yi-Hsuan & Härdle Wolfgang Karl, 2017. "Data science and digital society," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 669-675, July.
  • Handle: RePEc:vrs:poicbe:v:11:y:2017:i:1:p:669-675:n:71
    DOI: 10.1515/picbe-2017-0071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/picbe-2017-0071
    Download Restriction: no

    File URL: https://libkey.io/10.1515/picbe-2017-0071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    2. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 610-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    2. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    3. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    4. Xu, Qiuhua & Zhang, Yixuan & Zhang, Ziyang, 2021. "Tail-risk spillovers in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 38(C).
    5. Addi, Abdelhamid & Bouoiyour, Jamal, 2023. "Interconnectedness and extreme risk: Evidence from dual banking systems," Economic Modelling, Elsevier, vol. 120(C).
    6. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    7. Chen, Bin-xia & Sun, Yan-lin, 2024. "Financial market connectedness between the U.S. and China: A new perspective based on non-linear causality networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    8. Ren, Yinghua & Tan, Anqi & Zhu, Huiming & Zhao, Wanru, 2022. "Does economic policy uncertainty drive nonlinear risk spillover in the commodity futures market?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    9. Yang, Xin & Wen, Shigang & Zhao, Xian & Huang, Chuangxia, 2020. "Systemic importance of financial institutions: A complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    11. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    12. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    13. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    14. Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019. "Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
    15. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    16. Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022. "Asymmetric Network Connectedness of Fears," The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
    17. Habibi, Hamidreza & Mohammadi, Hassan, 2022. "Return and volatility spillovers across the Western and MENA countries," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    18. Ren, Yimeng & Li, Zhe & Zhu, Xuening & Gao, Yuan & Wang, Hansheng, 2024. "Distributed estimation and inference for spatial autoregression model with large scale networks," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Okhrin, Yarema, 2019. "Tail event driven networks of SIFIs," Journal of Econometrics, Elsevier, vol. 208(1), pages 282-298.
    21. Muzi Chen & Nan Li & Lifen Zheng & Difang Huang & Boyao Wu, 2024. "Dynamic Correlation of Market Connectivity, Risk Spillover and Abnormal Volatility in Stock Price," Papers 2403.19363, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:poicbe:v:11:y:2017:i:1:p:669-675:n:71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.